-RULUG

29/11/04

Prolog: Beyond the text
& Summary

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 18
29/11/04

AIPP Lecture 18: Beyond the Text & Summary

ULUG

)
Rl

29/11/04

Contents

Prolog: Beyond the text
— Tcl/tk

— Java and prolog

— Visual Prolog

~ COGENT

* Will not be examined on ‘Beyond the text'. It presents
advanced Prolog details beyond the specification of this
course”.

Exam details

Lecture Summaries

AIPP Lecture 18: Beyond the Text & Summary

Creating Prolog GUIs

* In AIPP we have only been using Prolog at the command
line.

This makes it seem of limited use, more “retro”,
compared to other languages, such as Java, which have
significant graphical components.

* But, Prolog does not have to be just textual!

« Various techniques exists for creating Graphical User
Interfaces (GUIs) for Prolog:

— Tcl/tk

— Jasper (Java interface)

— Visual Basic (not discussed)
— Visual Prolog™

Ol 0G

Details on all of these available in the SICStus manual.
] http://www.sics.se/sicstus/docs/latest/html/sicstus.html/

)
Rl

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 3

UL UG

!

DA D

Tcl/Tk

« Tcl/Tk (“tickle/tee-kay”)

— a Sscripting language and
— toolkit for manipulating window based interfaces.

 Very simple to code and quickly prototype cross-

platform GUIs.

* You might have come across Tcl/Tk on the HCI course.
« SICStus Prolog contains a Tcl/Tk library (tcltk) which

allows GUIs to be controlled and created:

1. The Prolog program loads the Tcl/Tk Prolog library,
2. creates a Tcl/Tk interpreter, and

3. sends commands to the interpreter to create a GUI.
4

The user interacts with the GUI and therefore with the
underlying Prolog system.

« See SICStus manual for Tcl/Tk tutorials.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 4

L

-

LU

I

DA D

%

te
te
te
te

go

Tcl/Tk

telephone book example

use module (library(tcltk)).

Fmﬁm—l—ﬂ[

lephone (fred, '123-456"). maﬂd

lephone (wilbert, '222-2222'). search
lephone (taxi, '200-0000"). 00-36-1-6EE-GEBEG
lephone (mary, '00-36-1-666-6666") . — : -

tk_new([name ('Example 2')], T),

tcl eval (T, 'entry .name -textvariable name',),

tcl eval (T, 'button .search -text search -command ({
prolog telephone ($name,X); € Prolog query
set result $prolog_variables(X) | A

tcl eval (T, 'label .result -relief raised -textvariable
result',),

tcl eval (T, 'pack .name .search .result -side top -fill
X',_),

tk main loop.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary

Prolog - Java: Jasper

« We can take advantage of the advanced programming
and GUI strengths of Java by using Jasper.

Jasper is a bi-directional interface between Java and
SICStus Prolog.

« Either Java or Prolog can be the parent application:
« If Prolog is the parent application:

— Control of Java is via use_module(library(jasper)) which
provides predicates for:

* Initializing the JVM (Java Virtual Machine),

» Creating and deleting Java objects directly from Prolog ,
* Method calls,

» Global and local (object) reference management.

Ol 0OG

However, you will probably mostly control Prolog from
‘\ Java (to take advantage of its search and DB strengths).

)
!

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 6

!

ULUG

DA D

Java -2 Prolog

If Java is the parent application,

— the SICStus runtime kernel will be loaded into the JVM
using the System.loadLibrary() method and

— the package (se.sics.jasper) provides classes representing
the SICStus run-time system (SICStus, SPTerm, etc).

This set of Java classes can then be used to
— create and manipulate terms,
— ask queries and
— request one or more solution.

The results of the Prolog query can then be utilised by
the parent program written in Java (e.g. to display output
in a GUI).

A similar package exists for interfacing Prolog to C/C++.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 7

!

LU

DA D

Visual Prolog

So far, we have only discussed creating GUlIs.

Most other languages also provide a visual development
environment (VDE) to simplify the task of programming.

Visual Prolog (http://www.visual-prolog.com/) is a language and
VDE used to create stand-alone Prolog programs with
Windows-standard GUIs.
Contains: - an editor

- debugger

- compiler

- GUI editors

Based on Turbo Prolog and PDC Prolog not ISO Prolog so
there are a few idiosyncrasies but mostly familiar.

Allows direct coding or automatic code writing through the use
of Wizards.

A free non-commercial version is available.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 8

Programming in Visual Prolog

« Programs are written in modified Prolog code.

Predicate definitions are written as normal but are identified as
serving a particular function.

* Incorporates ideas from object-orienting programming:
— programs are split up into classes which control the scope of

clauses, variables, and constants.
— classes are stored in separate files.

« Extra code controls how the logical computation interfaces with
the GUI.

O0L0E

The GUI editor allows Dialog boxes and Menus to be created
and coded using a Wizard.

!

BAD

« Supports memory management, linkage to other languages
(e.g. HTML, Java, C/++) and Windows functions.

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 9

rossword Helper.prjé - Visual Prolog Version 6 nregistered version

Purchase File Edit Wiew Insert Project Build Debug Goto Tools Web Window Help
DB~ |¥BRCBEER|» 1 X000 208 e[@R 2
eedTest.pro (speedTest))

125:18 Insert Indent

list requires 496 Prolog procedure calls,
{3 dataHanding [oo

>

{7 interFace class predicates
{3 pfchstringhsting_api nrev:(unsign_ed_list,_unsign_ed_list)_ proce_dure(i,q). B
@ string_api.ph append:{unsigned_list,unsigned_list,unsigned_list) procedureli,i,o).
speedTest A
speedtest.cl
speedtest.i nrevi[1,01).
- speedTest.pack nrevi[®|Rest],Ans) :- nreviRest,L), appendiL,[<],Ans),
g speadtest.ph
B speediest pro append([],L,L}.
o[Taskiwindow appendi[x|L1],L2,[X]L3]) :-
£ tools append(L1,L2,L3),
3 dtaBases class facts
datab asex. pack data:{unsigned_list).

databazes.ph
externaldatabaszes. ol clauses
enternaldatabases.i data([1,2,34,5,6,7,8,9,10,11,12,13,14,15,16,17,15,19,20,
extemaldatabasss. pio 21,22,23,24,25,26,27,258,29,30]).
localdatabazes.cl
B localdatsbazespra 0 BN .
- fists lots -- Run benchmark with a variety of iteration counts.

[shrings

J--- crozswordhelper.cl Call this to run the benchrmark with increasing numbers
- [B5 crosswordHelper pack of iterations. The figures produced should be about the same -
b crosswordhelper,ph except that there may be inaccuracies at low iteration numbers
i if the time these examples take to execute on your machine are
crasswordhelper.pro too small to be very precise (because of the accuracy the

£
readme.htm o operating system itself is capable of praviding).
J"' resaurceidentifiers.i If the time taken for these examples is too long or short then
you should adjust the eg_counti_) facts,
class predicates
lats:h,
clauses
lots{) :-
benchiCaount),
| | |
Y
* Messages
File T askiw/indowhT askiindow.pack compiled
File Taskwfindow\Toolbar T oolbars. pack compiled -
Build process failed due to erors.
1 File interFacetinterF ace. pack compiled
The module interFacehinterF ace. pack' has been auto-updated with additional include statement(z]. The module will be built again after auto inzert.
1 warning
You may MOT distibute this application or use it commercially.

eq_count{ Count),
Froject components have been saved
File interFacetinterFace. pack compiled
Project has been built.
Mo changes.
£ |

< il

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 10

ULUG

!

DA D

COGENT

Prolog can also be found at the base of other systems.

COGENT is a rule-base language and visual development
environment for cognitive modelling.

— Cognitive Objects within a Graphical EnviroNmenT

Models of cognitive systems (e.g. memory, reasoning,
problem solving) can be developed by

— drawing flow charts,
— filling in forms, and
— modifying cognitive modules (e.g. memory buffers, 1/0).

The user develops computational models without the need
for direct coding.

However, the resulting programs are similar to Prolog and
the VDE can be bypassed to code rules directly.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 11

] Seliiraction with P ietargreter: Ten Sep 18 166508 2inz

Fim Eii Pun C0E. Hap. Oong

o S |3|.l.|l ardin with FE e rd e

Thipes B0, o L O3 e e

Bl Dersrigne ||=. weraioh of Wi Vouny & OFEhaa Q1 531) nioded, displangid o pajier”

Dy e |De:n1ﬂ.hn|Frl:lp-urlr¢|Mbm.m Kexkis | bessager |

i Produciarf Froduction Syafh
L Ty Iraermreter

|

-

] [) [)) e

‘ i s o e

|Fm Edi Fun &S Halp. Done B2 &)] -

Bame: rEmLun- Hriwan

WMM FIIIH T na b e . o A R i i e

Aulsss & Canabin e ik | Dmeripten | Properies | Meseages |

Rmle 1 (ussefractedl; fond Hhesubtrebend - 2 carry
TRKCER: delraad_m_and_g, H) —
IF; pesibiensli, o oAy Yoyl
s subimahandi’¥) is in Papar
reok el ot (Hewery eamrydd in in Paper
Tedl_, Sk 5, VI 0S in Papsar
THEM: dalpts all wmslspbbrabandl_L _) from Werking Memeny
add s Eubiraiend Sy kG Do Working Mamoey

Fale 2 (ussslraited): feod M sudirobaed - oonne

y_subbrabendl¥] is in Paper

\
TREKICER; codread_m_and_s. HI
IF: poaitionsil. _, . Eoamy, Yoayl
|

el 1 @t Gicairy . S'oanwdl B in Paped
et SO ak o, VI is In Paper
SiE 80 +1
THEH; delede all wmelspbirabendl_L _) tfrem Werking Hemsny
add wivsalzubratandi®y, koo Working Mamosy

Fsli 3 (Ueeslr o)) faod 30e iniiuend - mod osoietisdred
TEKICER: dedraad_mioand_xs HI =

Hasa el P"'"_ AE | o BTl bl

I 29/11/04

COGENT highlights the
suitability of Prolog for Al.

Artificial Intelligence should
endeavour to create
computational systems that
replicate the functions of
natural cognitive systems.

Prolog was developed as a
logic-based programming
language precisely because
logic is considered as a
suitable representation for
human reasoning.

Therefore, Prolog is THE Al
programming language.

AIPP Lecture 18: Beyond the Text & Summary 12

ULUG

I

))

Summary: Beyond the text

There are few ‘real’ reasons for not considering Prolog
for use in commercial settings.

Most of the aesthetic and practical issues can be
resolved by using Visual Prolog or creating GUlIs.

— However, building GUIs complicates what would otherwise
be a very simple, economical Prolog program.

— S0, stick to text unless you have a real reason why your
program needs a GUI.

Prolog can be used to solve most symbolic computation
problems using concise and efficient programs.

Sometimes it may not be the first language you think of
but don’t dismiss outright.

Due to its flexibility you can make it do virtually anything
you want. You just have to know how.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 13

SROLOG

Part 2:
Summary and Recap

e

a

)
Rl

AlIPP Examination

To be held between late April and mid May.
1.5 hr exam. 70% of course mark.

One compulsory section:
— testing your general Prolog knowledge. Consisting of
« short answer questions,
» deciphering prewritten predicates,
« writing small predicates.
Choose one section from two alternatives.
— Longer answer questions consisting of:
* Must develop or adapt a short program;

» Might utilise specific techniques (e.g. DCG, sentence
manipulation, planning, operators, etc).

« Have to write descriptions of theory as well as code.

No text books permitted.

Look at course website for link to previous papers (vary in relevance).

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 15

L

j 1: Introduction to Prolog

* Prolog = Programming in Logic
« |ISO standard is based on Edinburgh Syntax.

* Derived from Horn Clauses:
 (parent(X,Z)/Aancestor(Z,Y)) > ancestor(X,Y)

Prolog is a declarative programming language:

— We ask our programs questions and they are proved using
a logic incorporated in the interpreter.

* A Prolog program is a database consisting of:
— facts: name(‘Bob Parr’).
— rules: incredible(X):- name(X), X = ‘Bob Parr’.

Prolog is good at Symbolic Al.
Prolog is bad at complex math, I/0, interfaces....

O C

)
!

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 16

L

3

U

)
!

2: Prolog Fundamentals

A Prolog program consists of predicate definitions.

A predicate denotes a property or relationship between objects.
Definitions consist of clauses.

A clause has a head and a body (Rule) or just a head (Fact).

A head consists of a predicate name and arguments.

A clause body consists of a conjunction of terms.

Terms can be constants, variables, or compound terms.

We can set our program goals by typing a command that unifies
with a clause head.

A goal unifies with clause heads in order (top down).
Unification leads to the instantiation of variables to values.

If any variables in the initial goal become instantiated this is
reported back to the user.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 17

(;D 3: The central ideas of Prolog

« SUCCESS/FAILURE
‘ — any computation can “succeed" or “fail", and this is used as
a ‘test’ mechanism.

MATCHING

— any two data items can be compared for similarity (X==Y),
and values can be bound to variables in order to allow a
match to succeed (X =Y).

SEARCHING

— the whole activity of the Prolog system is to search through
various options to find a combination that succeeds.

‘ « Main search tools are backtracking and recursion
r r BACKTRACKING

| — when the system fails during its search, it returns to previous
choices to see if making a different choice would allow

r] SUCCESS.

e

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 18

f F) 4: Recursion, Structures, and Lists

O C

)
!

Prolog’s proof strategy can be represented using
AND/OR trees.

Tree representations allow us trace Prolog’s search
for multiple matches to a query.

They also highlight the strengths and weaknesses of
recursion (e.g. economical code vs. infinite looping).

Recursive data structures can be represented as
structures (functor (component)) Or lists ([a,b,X,a(1)]).

Structures can be unified with variables then used as
commandsS: X=member (x,[a,d,x]), call(X).

Lists can store ordered data and allow its sequential
processing through recursion.

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 19

4: Prolog Data Objects (Terms)

/\

F: W SW&
Constants Variables Structures Lists
| X date (4,10,04) []
A var person(bob,48) [a,b,qg]
Atoms Integers _Var [[al, [b]]
— [bit (a,d),a, Bob’]
987
‘ Symbols Signs
r r_‘ a Strings ____o
I bob ==>
18r 2day &'
‘Bob’
(—\1 ‘L8r 2day’

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 20

5: List Processing

« Lists can be decomposed by unifying with [Head|Tail]
Base case: is_a 1ist([]).
Recursive cases: is_a 1list([_|T]):- is a list(T).

« Using focused recursion to stop infinite loops.
— only recurse on smaller parts of the problem.

« Lists are deconstructed during recursion then
reconstructed on backtracking.

« Showed three techniques for collecting results:

— Recursively find a result, then revise it at each level.
* listlength/3
— Use an accumulator to build up result during recursion.
* reverse/3
— Build result in the head of the clause during backtracking.
1 * append/3

010G

1

DA D

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 21

UL UG

)
!

6: Built-in Predicates.

var (X) is true if X is currently an uninstantiated variable.
nonvar (X) is true if X is not a variable, or already instantiated

atom (X) is true if X currently stands for an atom

number (X) is true if X currently stands for a number

integer (X) is true if X currently stands for an integer

float (X) is true if X currently stands for a real number.

atomic (X) is true if X currently stands for a number or an atom.
compound (X) is true if X currently stands for a structure ([a] or b(a)).
ground (X) is true if X does not contain any uninstantiated variables.

arg (N, Term,A) is true if A is the Nth argument in Term.

functor (T, F,N)is true if F is the principal functor of T and N is the arity of
F: functor (father (bob) , father,1) .

Term =.. L is true if L is a list that contains the principal functor of
Term, followed by its arguments:

father (bob) =.. [father,bob].

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 22

6: All Solutions

« Built-in predicates that repeatedly call a goal P, instantiating the
variable X within P and adding it to the list L.

They succeed when there are no more solutions.

« Exactly simulate the repeated use of *;’ at the SICStus prompt
to find all of the solutions.

findall (X,P,L) = “find all of the Xs, such that X satisfies goal
P and put the results in list L.

€.Jd. findall (X, (member (X, [2,5,6,4,7]) ,X>4) ,L) .»> L=[5,6,7].

O0L0G

setof (X,P,L)= It produces the seft of all X that solve P, with any
duplicates removed, and the results sorted.

bagof (X,P,L)= Same as setof/3 but contains duplicates and
results aren’t sorted.

)
Rl

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 23

ULUG

-

!

))

/. Controlling Backtracking

« Clearing up equality: =, is, =:=, =\=, ==, \==, \+
« Controlling backtracking: the cut ! . Succeeds when first

called and commits proof to the clause it is in. Fails on
backtracking (REDO).

— Efficiency: avoids needless REDO-ing which cannot
succeed.

— Simpler programs: conditions for choosing clauses can be
simpler.

— Robust predicates: definitions behave properly when
forced to REDO.

= cut doesn’t change the predicate logic as clauses
are mutually exclusive anyway = good

* Red cut = without the cut the logic is different = bad
« Cut — fail: when it is easier to prove something is false than true.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 24

UL UG

!

DA D

3: State-Space Search

State-Space Search can be used to find optimal paths through
problem spaces.

A state-space is represented as a downwards-growing tree
with nodes representing states and branches as legal moves
between states.

Prolog’s unification strategy allows a simple implementation of
depth-first search.

The efficiency of this can be improved by performing iterative
deepening search (using backtracking).

Breadth-first search always finds the shortest path to the goal
state.

Both depth and breadth-first search can be implemented using
an agenda:

— depth-first adds new nodes to the front of the agenda;
— breadth-first adds new nodes to the end.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 25

;e

a

-

!

))

9: Informed Search Strategies

Blind search: Depth-First, Breadth-First, IDS
— Do not use knowledge of problem space to find solution.

vs. Informed search

Best-first search: Order agenda based on some measure of how
‘good’ each state is.

Uniform-cost: Cost of getting to current state from initial state = g (n)

Greedy search: Estimated cost of reaching goal from current state
= Heuristic evaluation function, h (n)

A*search: £(n) = g(n) + h(n)

Admissibility: h (n) never overestimates the actual cost of getting to
the goal state.

Informedness: A search strategy which searches less of the state-
space in order to find a goal state is more informed.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 26

10: Definite Clause Grammars

We can use the --> DCG operator in Prolog to define grammars
for any language.
e.g. sentence --> noun phrase, verb phrase

« The grammar rules consist of non-terminal symbols (e.g. NP,
VP) which define the structure of the language and terminal
symbols (e.g. Noun, Verb) which are the words in our language.

« The Prolog interpreter converts the DCG notation into
conventional Prolog code using difference lists.

| ?- sentence([‘'I’,like,cheese],[]).

ULUG

« We can add arguments to non-terminal symbols in our grammar
for any reason (e.g. number agreement).

« We can also add pure Prolog code to the right-hand side of a
DCG rule by enclosing itin { }.

)
!

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 27

11: Parsing and Semantics in DCGs

* A basic DCG only recognises sentences.

A DCG can also interpret a sentence and extract a
rudimentary representation of its meaning:

« A Parse Tree: identifies the grammatical role of each

word and creates a structural representation.
sentence (s (NP,VP)) --> noun phrase (NP), verb phrase (VP).

* Logical Representation: we can construct Prolog terms
from the content of the sentence.

OLOG

- intrans_verb (Somebody,paints (Somebody)) --> [paints].
— These can then be used as queries passed to the Prolog
iInterpreter

— e.g. “Does jim paint?” would be converted to paints(jim) by
the DCG and if a matching fact existed in the database the
] answer would be “yes”.

)
!

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 28

UL UG

I

DA D

write/[1,2]

nl/[0,1]
tab/[1,2]

put/[1,2]
read/[1,2]
get/[1,2]

get0/[1,2]
see/1
seeing/1
seen/0
tell/1
telling/1
told/0
name/2

29/11/04

12: Input/Output

write a term to the current output stream.
write a new line to the current output stream.

write a specified number of white spaces to the current
output stream.

write a specified ASCII character.
read a term from the current input stream.

read a printable ASCII character from the input stream
(i.e. skip over blank spaces).

read an ASCII character from the input stream

make a specified file the current input stream.

determine the current input stream.

close the current input stream and reset it to user.

make a specified file the current output stream.

determine the current output stream.

close the current output stream and reset it to user.

arg1 (an atom) is made of the ASCII characters listed in arg2

AIPP Lecture 18: Beyond the Text & Summary 29

13: Sentence Manipulation

 Tokenizing a sentence:
— use name/2 to convert a sentence into a list of ASCI|
— group characters into words by identifying spaces (32)

* A Tokenized sentence can then be input to a DCG and
Prolog queries generated based on its meaning.

« Morphological processing: words can be transformed
(e.g. pluralised) by pattern-matching ASCII lists and
appending suffixes.

ULUG

« Pattern-matching can also be used to implement "stupid’
Chat-Bots, e.g. ELIZA

rule([i,hate,X,'.'], [do,you,really,hate, X, ?]).

« But pattern-matching is not as flexible as DCG parsing
] and does not extract any meaning.

)
Rl

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 30

L

!

LU

DA D

_D 14: Database Manipulation

assert(Clause): add clauses to the database (DB)
— asserta(Clause): add as the first predicate definition.
— assertz(Clause): add as the last predicate definition.

retract(Clause): remove a clause from the DB
retractall(Head): remove all clauses with Head

.- dynamic a/2, b/3. Predicates must be declared as synamic
before they can be manipulated.

clause(Head,Body): finds first clause with a particular Head and
Body (these can be variables).

"Caching’ solutions.
— solve (probleml, Sol), asserta(solve(probleml, Sol).
"Listing® solutions to an output file.

— once new facts are asserted, they can be written to a new file,
saving them for later use.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 31

15: Planning

A Planis a sequence of actions that changes the state of the
world from an Initial state to a Goal state.

Planning can be considered as a logical inference problem.

 STRIPS is a classic planning language.
— It represents the state of the world as a list of facts.

— Operators (actions) can be applied to the world if their preconditions
hold.

» The effect of applying an operator is to add and delete states
from the world.

O0L0OE

* Alinear planner can be easily implemented in Prolog by:
— representing operators as opn (Name, [PreCons], [Add], [Delete]) .
— choosing operators and applying them in a depth-first manner,
— using backtracking-through-failure to try multiple operators.

)
R

I 29/11/04 AIPP Lecture 18: Beyond the Text & Summary 32

ULUG

!

))

16(1): More Planning

Blocks World is a very common Toy-World problem in Al.

Means-Ends Analysis (MEA) can be used to plan backwards
from the Goal state to the Initial state.

— MEA often creates more direct plans,
— but is still inefficient as it pursues goals in any order.

Goal Protection: previously completed goals can be protected
by making sure that later actions do not destroy them.

— Forces generation of direct plans through backtracking.

Best-first Planning can use knowledge about the problem
domain, the order of actions, and the cost of being in a state to
generate the ‘cheapest’ plan.

Partial-Order Planning can be used for problems that contain
multiple sets of goals that do not interact.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 33

16(2): Prolog Operators

» QOperators can be declared to create
— novel compound structures, (e.g. 15 hr 45 min) or
— a predicate in a non-conventional position (e.g. Shr <<< 6hr).

« All operators have:

— Precedence: a value between 200 and 1200 that specifies the
grouping of structures made up of more than one operator.

— Associativity: a specification of how structures made up of
operators with the same precedence group.

= The arguments of an operator (£) must be:
 of a strictly lower precedence value (notated x), or
« of an equal or lower precedence value (notated y).

* Operators are defined using op/3: :- op(700, xfx, <<<).

« Once an operator has been defined it can be defined as a
predicate in the conventional way.

29/11/04 AIPP Lecture 18: Beyond the Text & Summary 34

ULUG

!

)|)

17: Meta-Interpretation

« Controlling the flow of computation: call/1

— Representing logical relationships
 conjunctions (P/\Q): (FirstGoal, OtherGoals)
« disjunctions (P\/Q) : (FirstGoal; OtherGoals)
« conjunctive not 7 (PAQ) : \+ (FirstGoal, OtherGoals)

if.....then....else.....
e« X=>Y;Z

* Meta-Interpreters

29/11/04

clause(Head,Body)
left-to-right interpreter
right-to-left interpreter
breadth-first: using an agenda
best-first: using ground/1
others

solve (true) .

solve (Goal) :-
\+ Goal = (_,
solve (Body) .

solve ((Goall, Goal2)) :

solve (Goall),
solve (Goal2) .

)

AIPP Lecture 18: Beyond the Text & Summary

35

-RULUG

29/11/04

|?- write('Goodbye World’), fail.
Goodbye World
no

AIPP Lecture 18: Beyond the Text & Summary

36

