
29/11/04 AIPP Lecture 18: Beyond the Text & Summary 1

Prolog: Beyond the text
& Summary

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 18
29/11/04



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 2

Contents
• Prolog: Beyond the text

– Tcl/tk
– Java and prolog
– Visual Prolog
~ COGENT

* Will not be examined on ‘Beyond the text’. It presents
advanced Prolog details beyond the specification of this
course*.

• Exam details
• Lecture Summaries



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 3

Creating Prolog GUIs
• In AIPP we have only been using Prolog at the command

line.
• This makes it seem of limited use, more “retro”,

compared to other languages, such as Java, which have
significant graphical components.

• But, Prolog does not have to be just textual!
• Various techniques exists for creating Graphical User

Interfaces (GUIs) for Prolog:
– Tcl/tk
– Jasper (Java interface)
– Visual Basic (not discussed)
– Visual Prologtm

• Details on all of these available in the SICStus manual.
http://www.sics.se/sicstus/docs/latest/html/sicstus.html/



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 4

Tcl/Tk
• Tcl/Tk (“tickle/tee-kay”)

– a scripting language and
– toolkit for manipulating window based interfaces.

• Very simple to code and quickly prototype cross-
platform GUIs.

• You might have come across Tcl/Tk on the HCI course.
• SICStus Prolog contains a Tcl/Tk library (tcltk) which

allows GUIs to be controlled and created:
1. The Prolog program loads the Tcl/Tk Prolog library,
2. creates a Tcl/Tk interpreter, and
3. sends commands to the interpreter to create a GUI.
4. The user interacts with the GUI and therefore with the

underlying Prolog system.
• See SICStus manual for Tcl/Tk tutorials.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 5

Tcl/Tk
% telephone book example
:- use_module(library(tcltk)).

telephone(fred, '123-456').
telephone(wilbert, '222-2222').
telephone(taxi, '200-0000').
telephone(mary, '00-36-1-666-6666').

go :-
tk_new([name('Example 2')], T),
tcl_eval(T, 'entry .name -textvariable name',_),
tcl_eval(T, 'button .search -text search -command {

prolog telephone($name,X); ���� Prolog query
set result $prolog_variables(X) }',_),

tcl_eval(T, 'label .result -relief raised -textvariable
result', _),

tcl_eval(T, 'pack .name .search .result -side top -fill
x', _),

tk_main_loop.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 6

Prolog � Java: Jasper
• We can take advantage of the advanced programming

and GUI strengths of Java by using Jasper.
• Jasper is a bi-directional interface between Java and

SICStus Prolog.
• Either Java or Prolog can be the parent application:
• If Prolog is the parent application:

– Control of Java is via use_module(library(jasper)) which
provides predicates for:

• Initializing the JVM (Java Virtual Machine),
• Creating and deleting Java objects directly from Prolog ,
• Method calls,
• Global and local (object) reference management.

• However, you will probably mostly control Prolog from
Java (to take advantage of its search and DB strengths).



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 7

Java � Prolog
• If Java is the parent application,

– the SICStus runtime kernel will be loaded into the JVM
using the System.loadLibrary() method and

– the package (se.sics.jasper) provides classes representing
the SICStus run-time system (SICStus, SPTerm, etc).

• This set of Java classes can then be used to
– create and manipulate terms,
– ask queries and
– request one or more solution.

• The results of the Prolog query can then be utilised by
the parent program written in Java (e.g. to display output
in a GUI).

• A similar package exists for interfacing Prolog to C/C++.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 8

Visual Prolog
• So far, we have only discussed creating GUIs.
• Most other languages also provide a visual development

environment (VDE) to simplify the task of programming.
• Visual Prolog (http://www.visual-prolog.com/) is a language and

VDE used to create stand-alone Prolog programs with
Windows-standard GUIs.

• Contains: - an editor
- debugger
- compiler
- GUI editors

• Based on Turbo Prolog and PDC Prolog not ISO Prolog so
there are a few idiosyncrasies but mostly familiar.

• Allows direct coding or automatic code writing through the use
of Wizards.

• A free non-commercial version is available.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 9

Programming in Visual Prolog
• Programs are written in modified Prolog code.
• Predicate definitions are written as normal but are identified as

serving a particular function.
• Incorporates ideas from object-orienting programming:

– programs are split up into classes which control the scope of
clauses, variables, and constants.

– classes are stored in separate files.
• Extra code controls how the logical computation interfaces with

the GUI.
• The GUI editor allows Dialog boxes and Menus to be created

and coded using a Wizard.
• Supports memory management, linkage to other languages

(e.g. HTML, Java, C/++) and Windows functions.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 10



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 11

COGENT
• Prolog can also be found at the base of other systems.
• COGENT is a rule-base language and visual development

environment for cognitive modelling.
– Cognitive Objects within a Graphical EnviroNmenT

• Models of cognitive systems (e.g. memory, reasoning,
problem solving) can be developed by
– drawing flow charts,
– filling in forms, and
– modifying cognitive modules (e.g. memory buffers, I/O).

• The user develops computational models without the need
for direct coding.

• However, the resulting programs are similar to Prolog and
the VDE can be bypassed to code rules directly.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 12

COGENT
• COGENT highlights the

suitability of Prolog for AI.
• Artificial Intelligence should

endeavour to create
computational systems that
replicate the functions of
natural cognitive systems.

• Prolog was developed as a
logic-based programming
language precisely because
logic is considered as a
suitable representation for
human reasoning.

• Therefore, Prolog is THE AI
programming language.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 13

Summary: Beyond the text
• There are few ‘real’ reasons for not considering Prolog

for use in commercial settings.
• Most of the aesthetic and practical issues can be

resolved by using Visual Prolog or creating GUIs.
– However, building GUIs complicates what would otherwise

be a very simple, economical Prolog program.
– So, stick to text unless you have a real reason why your

program needs a GUI.
• Prolog can be used to solve most symbolic computation

problems using concise and efficient programs.
• Sometimes it may not be the first language you think of

but don’t dismiss outright.
• Due to its flexibility you can make it do virtually anything

you want. You just have to know how.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 14

Part 2:
Summary and Recap



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 15

AIPP Examination
• To be held between late April and mid May.
• 1.5 hr exam. 70% of course mark.
• One compulsory section:

– testing your general Prolog knowledge. Consisting of
• short answer questions,
• deciphering prewritten predicates,
• writing small predicates.

• Choose one section from two alternatives.
– Longer answer questions consisting of:

• Must develop or adapt a short program;
• Might utilise specific techniques (e.g. DCG, sentence

manipulation, planning, operators, etc).
• Have to write descriptions of theory as well as code.

• No text books permitted.
• Look at course website for link to previous papers (vary in relevance).



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 16

1: Introduction to Prolog
• Prolog = Programming in Logic
• ISO standard is based on Edinburgh Syntax.
• Derived from Horn Clauses:

• (parent(X,Z) ancestor(Z,Y)) ancestor(X,Y)
• Prolog is a declarative programming language:

– We ask our programs questions and they are proved using
a logic incorporated in the interpreter.

• A Prolog program is a database consisting of:
– facts: name(‘Bob Parr’).
– rules: incredible(X):- name(X), X = ‘Bob Parr’.

• Prolog is good at Symbolic AI.
• Prolog is bad at complex math, I/0, interfaces….



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 17

2: Prolog Fundamentals
• A Prolog program consists of predicate definitions.
• A predicate denotes a property or relationship between objects.
• Definitions consist of clauses.
• A clause has a head and a body (Rule) or just a head (Fact).
• A head consists of a predicate name and arguments.
• A clause body consists of a conjunction of terms.
• Terms can be constants, variables, or compound terms.
• We can set our program goals by typing a command that unifies

with a clause head.
• A goal unifies with clause heads in order (top down).
• Unification leads to the instantiation of variables to values.
• If any variables in the initial goal become instantiated this is

reported back to the user.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 18

3: The central ideas of Prolog
• SUCCESS/FAILURE

– any computation can “succeed'' or “fail'', and this is used as
a ‘test‘ mechanism.

• MATCHING
– any two data items can be compared for similarity (X==Y),

and values can be bound to variables in order to allow a
match to succeed (X =Y).

• SEARCHING
– the whole activity of the Prolog system is to search through

various options to find a combination that succeeds.
• Main search tools are backtracking and recursion

• BACKTRACKING
– when the system fails during its search, it returns to previous

choices to see if making a different choice would allow
success.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 19

4: Recursion, Structures, and Lists
• Prolog’s proof strategy can be represented using

AND/OR trees.
• Tree representations allow us trace Prolog’s search

for multiple matches to a query.
• They also highlight the strengths and weaknesses of

recursion (e.g. economical code vs. infinite looping).
• Recursive data structures can be represented as

structures (functor(component))or lists ([a,b,X,a(1)]).
• Structures can be unified with variables then used as

commands: X=member(x,[a,d,x]), call(X).
• Lists can store ordered data and allow its sequential

processing through recursion.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 20

4: Prolog Data Objects (Terms)
Simple objects Structured Objects

Constants

IntegersAtoms

Symbols
Strings

Signs

Variables Structures Lists

a
bob

l8r_2day ‘a’
‘Bob’

‘L8r 2day’

<--->
==>
…

-6
987

X
A_var
_Var

date(4,10,04)
person(bob,48)

[]
[a,b,g]

[[a],[b]]
[bit(a,d),a,’Bob’]



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 21

5: List Processing
• Lists can be decomposed by unifying with [Head|Tail]
• Base case: is_a_list([]).
• Recursive cases: is_a_list([_|T]):- is_a_list(T).
• Using focused recursion to stop infinite loops.

– only recurse on smaller parts of the problem.
• Lists are deconstructed during recursion then

reconstructed on backtracking.
• Showed three techniques for collecting results:

– Recursively find a result, then revise it at each level.
• listlength/3

– Use an accumulator to build up result during recursion.
• reverse/3

– Build result in the head of the clause during backtracking.
• append/3



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 22

var(X) is true if X is currently an uninstantiated variable.
nonvar(X) is true if X is not a variable, or already instantiated
atom(X) is true if X currently stands for an atom
number(X) is true if X currently stands for a number
integer(X) is true if X currently stands for an integer
float(X) is true if X currently stands for a real number.
atomic(X) is true if X currently stands for a number or an atom.
compound(X) is true if X currently stands for a structure ([a] or b(a)).
ground(X) is true if X does not contain any uninstantiated variables.
arg(N,Term,A) is true if A is the Nth argument in Term.
functor(T,F,N)is true if F is the principal functor of T and N is the arity of

F: functor(father(bob),father,1).
Term =.. L is true if L is a list that contains the principal functor of

Term, followed by its arguments:
father(bob) =.. [father,bob].

6: Built-in Predicates.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 23

6: All Solutions
• Built-in predicates that repeatedly call a goal P, instantiating the

variable X within P and adding it to the list L.
• They succeed when there are no more solutions.
• Exactly simulate the repeated use of ‘;’ at the SICStus prompt

to find all of the solutions.

findall(X,P,L) = `find all of the Xs, such that X satisfies goal
P and put the results in list L'.
e.g. findall(X,(member(X,[2,5,6,4,7]),X>4),L).���� L=[5,6,7].

setof(X,P,L)= It produces the set of all X that solve P, with any
duplicates removed, and the results sorted.

bagof(X,P,L)= Same as setof/3 but contains duplicates and
results aren’t sorted.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 24

7: Controlling Backtracking
• Clearing up equality: =, is, =:=, =\=, ==, \==, \+
• Controlling backtracking: the cut !. Succeeds when first

called and commits proof to the clause it is in. Fails on
backtracking (REDO).
– Efficiency: avoids needless REDO-ing which cannot

succeed.
– Simpler programs: conditions for choosing clauses can be

simpler.
– Robust predicates: definitions behave properly when

forced to REDO.
• Green cut = cut doesn’t change the predicate logic as clauses

are mutually exclusive anyway = good
• Red cut = without the cut the logic is different = bad
• Cut – fail: when it is easier to prove something is false than true.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 25

8: State-Space Search
• State-Space Search can be used to find optimal paths through

problem spaces.
• A state-space is represented as a downwards-growing tree

with nodes representing states and branches as legal moves
between states.

• Prolog’s unification strategy allows a simple implementation of
depth-first search.

• The efficiency of this can be improved by performing iterative
deepening search (using backtracking).

• Breadth-first search always finds the shortest path to the goal
state.

• Both depth and breadth-first search can be implemented using
an agenda:
– depth-first adds new nodes to the front of the agenda;
– breadth-first adds new nodes to the end.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 26

9: Informed Search Strategies
• Blind search: Depth-First, Breadth-First, IDS

– Do not use knowledge of problem space to find solution.
• vs. Informed search
• Best-first search: Order agenda based on some measure of how

‘good’ each state is.
• Uniform-cost: Cost of getting to current state from initial state = g(n)
• Greedy search: Estimated cost of reaching goal from current state

= Heuristic evaluation function, h(n)
• A* search: f(n) = g(n) + h(n)
• Admissibility: h(n)never overestimates the actual cost of getting to

the goal state.
• Informedness: A search strategy which searches less of the state-

space in order to find a goal state is more informed.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 27

10: Definite Clause Grammars
• We can use the --> DCG operator in Prolog to define grammars

for any language.
e.g. sentence --> noun_phrase, verb_phrase

• The grammar rules consist of non-terminal symbols (e.g. NP,
VP) which define the structure of the language and terminal
symbols (e.g. Noun, Verb) which are the words in our language.

• The Prolog interpreter converts the DCG notation into
conventional Prolog code using difference lists.
|?- sentence([‘I’,like,cheese],[]).

• We can add arguments to non-terminal symbols in our grammar
for any reason (e.g. number agreement).

• We can also add pure Prolog code to the right-hand side of a
DCG rule by enclosing it in { }.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 28

11: Parsing and Semantics in DCGs
• A basic DCG only recognises sentences.
• A DCG can also interpret a sentence and extract a

rudimentary representation of its meaning:
• A Parse Tree: identifies the grammatical role of each

word and creates a structural representation.
sentence(s(NP,VP)) --> noun_phrase(NP), verb_phrase(VP).

• Logical Representation: we can construct Prolog terms
from the content of the sentence.
– intrans_verb(Somebody,paints(Somebody)) --> [paints].
– These can then be used as queries passed to the Prolog

interpreter
– e.g. “Does jim paint?” would be converted to paints(jim) by

the DCG and if a matching fact existed in the database the
answer would be “yes”.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 29

12: Input/Output
write/[1,2] write a term to the current output stream.
nl/[0,1] write a new line to the current output stream.
tab/[1,2] write a specified number of white spaces to the current

output stream.
put/[1,2] write a specified ASCII character.
read/[1,2] read a term from the current input stream.
get/[1,2] read a printable ASCII character from the input stream

(i.e. skip over blank spaces).
get0/[1,2] read an ASCII character from the input stream
see/1 make a specified file the current input stream.
seeing/1 determine the current input stream.
seen/0 close the current input stream and reset it to user.
tell/1 make a specified file the current output stream.
telling/1 determine the current output stream.
told/0 close the current output stream and reset it to user.
name/2 arg1 (an atom) is made of the ASCII characters listed in arg2



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 30

13: Sentence Manipulation
• Tokenizing a sentence:

– use name/2 to convert a sentence into a list of ASCII
– group characters into words by identifying spaces (32)

• A Tokenized sentence can then be input to a DCG and
Prolog queries generated based on its meaning.

• Morphological processing: words can be transformed
(e.g. pluralised) by pattern-matching ASCII lists and
appending suffixes.

• Pattern-matching can also be used to implement `stupid‘
Chat-Bots, e.g. ELIZA

rule([i,hate,X,'.'], [do,you,really,hate,X,?]).

• But pattern-matching is not as flexible as DCG parsing
and does not extract any meaning.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 31

14: Database Manipulation
• assert(Clause): add clauses to the database (DB)

– asserta(Clause): add as the first predicate definition.
– assertz(Clause): add as the last predicate definition.

• retract(Clause): remove a clause from the DB
• retractall(Head): remove all clauses with Head
• :- dynamic a/2, b/3. Predicates must be declared as synamic

before they can be manipulated.
• clause(Head,Body): finds first clause with a particular Head and

Body (these can be variables).
• `Caching` solutions.

– solve(problem1, Sol), asserta(solve(problem1, Sol).
• `Listing‘ solutions to an output file.

– once new facts are asserted, they can be written to a new file,
saving them for later use.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 32

15: Planning
• A Plan is a sequence of actions that changes the state of the

world from an Initial state to a Goal state.
• Planning can be considered as a logical inference problem.
• STRIPS is a classic planning language.

– It represents the state of the world as a list of facts.
– Operators (actions) can be applied to the world if their preconditions

hold.
• The effect of applying an operator is to add and delete states

from the world.
• A linear planner can be easily implemented in Prolog by:

– representing operators as opn(Name,[PreCons],[Add],[Delete]).
– choosing operators and applying them in a depth-first manner,
– using backtracking-through-failure to try multiple operators.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 33

16(1): More Planning
• Blocks World is a very common Toy-World problem in AI.
• Means-Ends Analysis (MEA) can be used to plan backwards

from the Goal state to the Initial state.
– MEA often creates more direct plans,
– but is still inefficient as it pursues goals in any order.

• Goal Protection: previously completed goals can be protected
by making sure that later actions do not destroy them.
– Forces generation of direct plans through backtracking.

• Best-first Planning can use knowledge about the problem
domain, the order of actions, and the cost of being in a state to
generate the ‘cheapest’ plan.

• Partial-Order Planning can be used for problems that contain
multiple sets of goals that do not interact.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 34

16(2): Prolog Operators
• Operators can be declared to create

– novel compound structures, (e.g. 15 hr 45 min) or
– a predicate in a non-conventional position (e.g. 5hr <<< 6hr).

• All operators have:
– Precedence: a value between 200 and 1200 that specifies the

grouping of structures made up of more than one operator.
– Associativity: a specification of how structures made up of

operators with the same precedence group.
= The arguments of an operator (f) must be:

• of a strictly lower precedence value (notated x), or
• of an equal or lower precedence value (notated y).

• Operators are defined using op/3: :- op(700, xfx, <<<).

• Once an operator has been defined it can be defined as a
predicate in the conventional way.



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 35

17: Meta-Interpretation
• Controlling the flow of computation: call/1

– Representing logical relationships
• conjunctions ( ): (FirstGoal, OtherGoals)
• disjunctions ( (FirstGoal; OtherGoals)
• conjunctive not ¬ ( \+ (FirstGoal, OtherGoals)

– if.....then....else.....
• X -> Y; Z

• Meta-Interpreters
– clause(Head,Body)
– left-to-right interpreter
– right-to-left interpreter
– breadth-first: using an agenda
– best-first: using ground/1
– others

solve(true).

solve(Goal) :-
\+ Goal = (_, _),
solve(Body).

solve((Goal1, Goal2)) :-
solve(Goal1),
solve(Goal2).



29/11/04 AIPP Lecture 18: Beyond the Text & Summary 36

|?- write(‘Goodbye World’), fail.
Goodbye World
no


