
22/11/04 AIPP Lecture 16: More Planning and Operators 1

More Planning and
Prolog Operators

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 16
22/11/04

22/11/04 AIPP Lecture 16: More Planning and Operators 2

Contents
• Planning continued

– Implementing MEA
– Protecting Goals
– Best-first Planning
– Partial Order Planning

• Operators
– What operators do
– How the built-in operators work
– How to define your own operators
– Operators as functors for structures
– Operators as predicate-names

22/11/04 AIPP Lecture 16: More Planning and Operators 3

Welcome to Blocks World
• Blocks World is THE classic Toy-World problem of AI. It has

been used to develop AI systems for vision, learning, language
understanding, and planning.

• It consists of a set of solid blocks placed on a table top (or,
more often, a simulation of a table top). The task is usually to
stack the blocks in some predefined order.

• It lends itself well to the planning domain as the rules, and state
of the world can be represented simply and clearly.

• Solving simple problems can often prove surprisingly difficult so
it provides a robust testing ground for planning systems.

1 2 3 4

a
c

b
1 2 3 4

a

c
b

22/11/04 AIPP Lecture 16: More Planning and Operators 4

Means-Ends Analysis
• From last lecture….
• Means-Ends Analysis plans backwards from the Goal state,

generating new states from the preconditions of actions, and
checking to see if these are facts in our initial state.

• To solve a list of Goals in current state State, leading to state
FinalState, do:
– If all the Goals are true in State then FinalState = State.

Otherwise do the following:
1.Select a still unsolved Goal from Goals.
2.Find an Action that adds Goal to the current state.
3.Enable Action by solving the preconditions of Action,

giving MidState.
4.MidState is then added as a new Goal to Goals and the

program recurses to step 1.

22/11/04 AIPP Lecture 16: More Planning and Operators 5

Implementing MEA
[Taken from Bratko, 2001, pg 420]
plan(State,Goals,[],State):- % Plan is empty

satisfied(State, Goals). % Goals true in State

plan(State,Goals,Plan,FinalState):-
append(PrePlan,[Action|PostPlan],Plan), % Divide plan

member(Goal,Goals),
\+ member(Goal,State), % Select a goal

opn(Action,PreCons,Add),
member(Goal,Add), % Relevant action

can(Action), % Check action is possible

plan(State,PreCons,PrePlan,MidState1), % Link Action to
Initial State.

apply(MidState1,Action,MidState2), % Apply Action
plan(MidState2,Goals,PostPlan,FinalState).

% Recurse to link Action to rest of Goals.

22/11/04 AIPP Lecture 16: More Planning and Operators 6

Implementing MEA (2)
opn(move(Block, From, To), % Name

[clear(Block), clear(To), on(Block, From)], % Precons
[on(Block,To), clear(From)]). % Add List

can(move(Block,From,To)):-
is_block(Block), % Block to be moved
object(To), % "To" is a block or a place
To \== Block, % Block cannot be moved to itself
object(From), % "From" is a block or a place
From \== To, % Move to new position
Block \== From. % Block not moved from itself

satisfied(_,[]). % All Goals are satisfied
satisfied(State,[Goal|Goals]):-

member(Goal,State), % Goal is in current State
satisfied(State,Goals).

22/11/04 AIPP Lecture 16: More Planning and Operators 7

Protecting Goals
• MEA produces a very inefficient plan:

Plan = [move(b,3,c), move(b,c,3),move(c,a,2), move(a,1,b),
move(a,b,1), move(b,3,c), move(a,1,b)]

1 2 3 4

a
c

b

1 2 3 4

a
c
b

1 2 3 4

a c b

1 2 3 4

a
c b

1 2 3 4

a c
b

1 2 3 4

a

c
b

Initial State

Goal State

22/11/04 AIPP Lecture 16: More Planning and Operators 8

Protecting Goals (2)
• The plan is inefficient as the planner pursues different goals at

different times.
• After achieving one goal (e.g. on(b,c) where on(c,a)) it must

destroy it in order to achieve another goal (e.g. clear(a)).
• It is difficult to give our planner foresight so that it knows which

preconditions are needed to satisfy later goals.
• Instead we can get it to protect goals it has already achieved.
• This forces it to backtrack and find an alternate plan if it finds

itself in a situation where it must destroy a previous goal.
• Once a goal is achieved it is added to a Protected list and

then every time a new Action is chosen the Action’s delete list
is checked to see if it will remove a Protected goal.

22/11/04 AIPP Lecture 16: More Planning and Operators 9

Best-first Planning
• So far, our planners have generated plans using depth-first

search of the space of possible actions.
• As they utilise no domain knowledge when choosing alternative

paths, the resulting plans are very inefficient.
• There are three ways heuristic guidance could be incorporated;

1. The order in which goals are pursued. For example, when
building structures you should always start with the foundations
then work up.

2. Choosing between actions that achieve the same goal. You
might want to choose an action that achieves as many goals
as possible, or has preconditions that are easy to satisfy.

3. Evaluating the cost of being in a particular state.

22/11/04 AIPP Lecture 16: More Planning and Operators 10

Best-first Planning (2)
• The state space of a planning problem can be generated by

– regressing a goal through all the actions that satisfy that
goal, and

– generating all possible sets of sub-goals that satisfy the
preconditions for this action.

= this is known as Goal Regression.

• The ‘cost’ of each of these sets of sub-goals can then be
evaluated.
– cost = a measure of how difficult it will be to complete a plan

when a particular set of goals are left to be satisfied.

• By ordering these sets of sub-goals based on the heuristic
evaluation function and always choosing the ‘cheapest’ set,
our planner can derive a plan using best-first search.

22/11/04 AIPP Lecture 16: More Planning and Operators 11

Partial Order Planning

• Our current planners will always consider all possible orderings
of actions even when they are completely independent.

• In the above example, the only important factor is that the two
plans do not interact.
– The order in which moves alternate between plans is unimportant.
– Only the order within plans matters.

• Goals can be generated without precedence constraints (e.g.
on(a,b), on(d,e)) and then left unordered unless later pre-
conditions introduce new constraints (e.g. on(b,c) must precede
on(a,b) as \+clear(a)).

= A Partial-Order Planner (or Non-Linear Planner).

a c
b

f d
e

1 2 3 4 5 6 7 8

a

c
b

f

d
e

1 2 3 4 5 6 7 8

22/11/04 AIPP Lecture 16: More Planning and Operators 12

Summary: Planning
• Blocks World is a very common Toy-World problem in AI.
• Means-Ends Analysis (MEA) can be used to plan backwards

from the Goal state to the Initial state.
– MEA often creates more direct plans,
– but is still inefficient as it pursues goals in any order.

• Goal Protection: previously completed goals can be protected
by making sure that later actions do not destroy them.
– Forces generation of direct plans through backtracking.

• Best-first Planning can use knowledge about the problem
domain, the order of actions, and the cost of being in a state to
generate the ‘cheapest’ plan.

• Partial-Order Planning can be used for problems that contain
multiple sets of goals that do not interact.

22/11/04 AIPP Lecture 16: More Planning and Operators 13

Part 2:
Prolog Operators

*WARNING: The operators discussed in the
following slides do not refer to the same
“operators” previously seen in planning!*
(Just an unfortunate terminological clash)

22/11/04 AIPP Lecture 16: More Planning and Operators 14

What is an operator?
• Functors and predicate names generally precede arguments,

with arguments grouped using brackets:
ancestor(fred, P).
find_age(person(fred,smith), Age).

• To allow these names to be positioned elsewhere, they have to
be declared as operators.

• All standard Prolog punctuation and arithmetic symbols are
built-in operators.

• An operator can be:
– infix (placed between its arguments) e.g. 5+6, a :- b,c.
– prefix (placed before its arguments, without the need for

brackets) e.g. \+5=6, -5, ?- use_module(X).
– postfix (placed after its arguments) e.g. 5 hr

• THIS IS PURELY A NOTATIONAL CONVENIENCE.

22/11/04 AIPP Lecture 16: More Planning and Operators 15

Operator position
• Usually, an operator can be written in conventional position,

and means exactly the same:
?- X is +(3, *(2,4)). ?- X is 3 + 2 * 4.
X = 11 X = 11
yes yes

?- +(3, *(2,4)) = 3 + 2 * 4.
yes

• For some of the fundamental punctuation symbols of Prolog,
such as comma, the name of the operator has to be put in
quotes before this can be done:
?- X = ','(a, b).
X = a,b ?
yes

• But it's usually not a good idea to use very basic Prolog
notation in non-standard positions.

22/11/04 AIPP Lecture 16: More Planning and Operators 16

Operator precedence
• Arithmetic operators obey grouping conventions just as in

ordinary algebra/arithmetic.
a + b * c = a + (b * c) \= (a + b) * c

• In Prolog, operator grouping is controlled by every operator
having a precedence, which indicates its priority relative to
other operators. (All values shown are for Sicstus Prolog).

• Precedence 500 (both for infix and prefix versions): +, -
• Precedence 400: *, /, // (integer division)
• Precedence 300: mod (the remainder of integer division)

• Operators with lower precedence “stick together” arguments
more than those with higher precedence.

• All operators have a precedence between 1200 (for :- and -->)
to 200 (for ^).

22/11/04 AIPP Lecture 16: More Planning and Operators 17

Associativity
• The associativity of an operator defines how many arguments it

takes (its arity) and the grouping of expressions constructed
from a series of operators with the same precedence.

• For example, a + b + c might seem ambiguous between
a + (b + c) and: (a + b) + c

• This makes a difference. For example: ?- X + Y = a + b + c.
X = a or this? X = (a+b)
Y = (b+c) Y = c
yes yes

• This is resolved by defining the functors/operators that are
allowed to neighbour a particular operator. The arguments eitherside and operator (f) can contain functor/operators that are:
– of a strictly lower precedence value (notated x), or
– of an equal or lower precedence value (notated y).

• E.g. the “+” sign is “y” to its left, ”x” to its right = yfx

22/11/04 AIPP Lecture 16: More Planning and Operators 18

= Exampled * a + b mod c * e + f
400 500 300 400 500

d * a + (b mod c) * e + f
400 500 400 500

(d * a)+ (b mod c) * e + f
500 400 500

(d * a)+ ((b mod c)* e)+ f
500 500

((d * a)+((b mod c)*e))+ f

• Hence a + b + c must mean (a + b) + c, as this makes its left
argument be (a + b), whose principal connector is also “+”,
which is of the same precedence.

• If the right argument were (b + c), that would violate the “strictly
lower precedence to the right”

Associativity (2)

+
(500)

+
(500)

*
(400)

*
(400)

mod
(300)

e

f

cb

ad

22/11/04 AIPP Lecture 16: More Planning and Operators 19

Operator definitions
• The Prolog notation for defining an operator uses the predicate

op/3, with arguments
– the numerical precedence (200-1200)
– an expression indicating the associativity:

• infix {xfx, xfy, yfx, yf};
• prefix {fx, fy};
• postfix {xf, yf}.

– the name of the operator, or a list of names for several operators.
• So the arithmetical operators are defined as if the system had

executed the goals:
• ?- op(500, yfx, [+, -]).
• ?- op(500, fx, [+, -]).
• ?- op(400, yfx, [*, /, //]).
• ?- op(300, xfx, [mod]).

• Any Prolog atom can be declared as a new operator in this way.

22/11/04 AIPP Lecture 16: More Planning and Operators 20

Examining operator declarations
• The built-in predicate current_op/3, which has the same

three arguments as op/3 can be used to examine any of the
current operator declarations.
|?- current_op(Prec, Assoc, +).
Prec = 500, Assoc = yfx;
Prec = 500, Assoc = fx;
no
– Note that + is defined as both an infix and prefix operator.

• The built-in predicate display/1 takes a term as its argument,
and displays that term in the conventional form with, all
operator positions shown according to their precedence and
associativity.
|?- display(1 + 2 – 3 * 4).
-(+(1,2),*(3,4))
yes

22/11/04 AIPP Lecture 16: More Planning and Operators 21

Defining an operator for a structure
• There are two main reasons for defining an operator:

– as a way of creating a compound structure, or
• 3 m 26 cm

– to use a predicate in a non-conventional position.
• 3 m 26 cm <<< 4 m

• Suppose we want a data structure for time-durations, in hours
and minutes.

• We could use a structure: duration(3, 14)
where the 1st component represents hours, 2nd is minutes.

• Or we could make this an infix operator “hr'' so our structures
would look like: 3 hr 14

• The latter is more intuitive to read. Now let us define it.

22/11/04 AIPP Lecture 16: More Planning and Operators 22

Precedence
• First we need to choose a precedence level?

• Relative position in hierarchy matters, not exact numerical code.

• If we want to allow
3 + 2 hr 5 * 10

to be grouped as:
(3 +2) hr (5 * 10)

then place “hr” higher than the arithmetical operators.

• Defining “hr” lower than the arithmetic operators would interpret
it as: 3 + (2 hr 5) * 10

• Therefore, we will choose somewhere between 500 [+, -] and
550 (the next op upwards) will do.

22/11/04 AIPP Lecture 16: More Planning and Operators 23

Choosing associativity
• We only need to consider left- or right-associativity if we want

to allow expressions such as:
2 hr 5 hr 10

• As these expressions won’t occur we want our operator to be
symmetrically associative.

• Therefore, we should make both sides the same:
– either both “x” or “y”.

• Definition:
?- op(525, xfx, hr). at the command prompt, or
:- op(525, xfx, hr). in the consulted file.

• This allows “hr” to be used as an infix operator in Prolog
expressions, meaning a structure with functor “hr” and two
arguments.

22/11/04 AIPP Lecture 16: More Planning and Operators 24

Defining an operator predicate
• The other use of an operator is as a predicate used in a non-

conventional position.
• Suppose we wanted to compare our time structures (items with

an “hr” operator) for size.
• We can’t just use < or > as the times are recorded as compound

structures that need to be deciphered.
• We need to define a suitable-looking operator for this

comparison: the “less than” operator could be <<<
• So we want to allow goals such as:

?- 3 hr 45 <<< 4 hr 20.
yes

22/11/04 AIPP Lecture 16: More Planning and Operators 25

Defining an operator predicate (2)
• What precedence should it have?
• We want 3 hr 45 <<< 4 hr 20

to be grouped as (3 hr 45) <<< (4 hr 20)
so “<<<“ should be higher than “hr”.

• Could put at the same level as the arithmetical comparison
operators (<, >, etc.), namely 700.

• Again, no issue regarding associativity. So definition is:
?- op(700, xfx, <<<). at the command prompt, or
:- op(700, xfx, <<<). in the consulted file.

• This definition ensures the Prolog system correctly groups
expressions containing <<<, but it gives no meaning to the
operator!

22/11/04 AIPP Lecture 16: More Planning and Operators 26

Giving meaning to an operator
• Once the operator is declared it can be defined as a predicate

in the usual way.
– The head should exactly match the format of the intended

goal e.g. H1 hr M1 <<< H2 hr M2, and
– The body should carry out the computation and tests

necessary to prove the goal as true.
H1 hr M1 <<< H2 hr M2 :-

% if hour less, time is less
H1 < H2.

H1 hr M1 <<< H1 hr M2 :-
% hour is same, depends on minutes
M1 < M2.

?- 3 hr 50 <<< 4 hr 10. ?- 3 hr 45 <<< 3 hr 15
yes no

22/11/04 AIPP Lecture 16: More Planning and Operators 27

Summary: Operators
• Operators can be declared to create

– novel compound structures, or
– a predicate in a non-conventional position.

• All operators have:
– Precedence: a value between 200 and 1200 that specifies

the grouping of structures made up of more than one
operator.

– Associativity: a specification of how structures made up of
operators with the same precedence group.

• Operators are defined using op/3:
:- op(700, xfx, <<<).

• Once an operator has been defined it can be defined as a
predicate in the conventional way.

