
18/11/04 AIPP Lecture 18: Planning 1

Planning

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 15
18/11/04



18/11/04 AIPP Lecture 18: Planning 2

Contents
• The Monkey and Bananas problem.
• What is Planning?
• Planning vs. Problem Solving
• STRIPS and Shakey
• Planning in Prolog
• Operators
• The Frame Problem
• Representing a plan
• Means Ends Analysis



18/11/04 AIPP Lecture 18: Planning 3

Monkey & Bananas
• A hungry monkey is in a room. Suspended from the roof, just

out of his reach, is a bunch of bananas. In the corner of the
room is a box. The monkey desperately wants the bananas
but he can’t reach them. What shall he do?



18/11/04 AIPP Lecture 18: Planning 4

Monkey & Bananas (2)
• After several unsuccessful attempts to reach the bananas, the

monkey walks to the box, pushes it under the bananas, climbs
on the box, picks the bananas and eats them.

• The hungry monkey is now a happy monkey.



18/11/04 AIPP Lecture 18: Planning 5

Planning
• To solve this problem the monkey needed to devise a plan, a

sequence of actions that would allow him to reach the desired
goal.

• Planning is a topic of traditional interest in Artificial Intelligence
as it is an important part of many different AI applications, such
as robotics and intelligent agents.

• To be able to plan, a system needs to be able to reason about
the individual and cumulative effects of a series of actions. This
is a skill that is only observed in a few animal species and only
mastered by humans.

• The planning problems we will be discussing today are mostly
Toy-World problems but they can be scaled up to real-world
problems such as a robot negotiating a space.



18/11/04 AIPP Lecture 18: Planning 6

Planning vs. Problem Solving
• Planning and problem solving (Search) are considered as

different approaches even though they can often be applied to
the same problem.

• Basic problem solving (as discussed in the Search lectures)
searches a state-space of possible actions, starting from an
initial state and following any path that it believes will lead it
the goal state.

• Planning is distinct from this in three key ways:
1. Planning “opens up” the representation of states, goals and

actions so that the planner can deduce direct connections
between states and actions.

2. The planner does not have to solve the problem in order (from
initial to goal state) it can suggest actions to solve any sub-goals
at anytime.

3. Planners assume that most parts of the world are independent
so they can be stripped apart and solved individually (turning the
problem into practically sized chunks).



18/11/04 AIPP Lecture 18: Planning 7

Planning using STRIPS
• The “classical” approach most planners use today is derived

from the STRIPS language.
• STRIPS was devised by SRI in the early 1970s to control a

robot called Shakey.
• Shakey’s task was to negotiate a series of rooms, move boxes,

and grab objects.
• The STRIPS language was used to derive plans that would

control Shakey’s movements so that he could achieve his
goals.

• The STRIPS language is very simple but expressive language
that lends itself to efficient planning algorithms.

• The representation we will use in Prolog is derived from the
original STRIPS representation.



18/11/04 AIPP Lecture 18: Planning 8

Shakey
• Shakey.ram



18/11/04 AIPP Lecture 18: Planning 9

STRIPS Representation
• Planning can be considered as a logical inference problem:

– a plan is inferred from facts and logical relationships.
• STRIPS represented planning problems as a series of state

descriptions and operators expressed in first-order predicate
logic.

State descriptions represent the state of the world at three points
during the plan:
– Initial state, the state of the world at the start of the problem;
– Current state, and
– Goal state, the state of the world we want to get to.

Operators are actions that can be applied to change the state of
the world.
– Each operator has outcomes i.e. how it affects the world.
– Each operator can only be applied in certain circumstances.

These are the preconditions of the operator.



18/11/04 AIPP Lecture 18: Planning 10

Planning in Prolog
• As STRIPS uses a logic based representation of states it lends

itself well to being implemented in Prolog.
• To show the development of a planning system we will

implement the Monkey and Bananas problem in Prolog using
STRIPS.

• When beginning to produce a planner there are certain
representation considerations that need to be made:
– How do we represent the state of the world?
– How do we represent operators?
– Does our representation make it easy to:

• check preconditions;
• alter the state of the world after performing actions; and
• recognise the goal state?



18/11/04 AIPP Lecture 18: Planning 11

Representing the World
• In the M&B problem we have:

– objects: a monkey, a box, the bananas, and a floor.
– locations: we’ll call them a, b, and c.
– relations of objects to locations. For example:

• the monkey is at location a;
• the monkey is on the floor;
• the bananas are hanging;
• the box is in the same location as the bananas.

• To represent these relations we need to choose appropriate
predicates and arguments:

• at(monkey,a).
• on(monkey,floor).
• status(bananas,hanging).
• at(box,X), at(bananas,X).



18/11/04 AIPP Lecture 18: Planning 12

Initial and Goal State
• Once we have decided on appropriate state predicates we need to

represent the Initial and Goal states.
• Initial State:

on(monkey, floor),
on(box, floor),
at(monkey, a),
at(box, b),
at(bananas, c),
status(bananas, hanging).

• Goal State:
on(monkey, box),
on(box, floor),
at(monkey, c),
at(box, c),
at(bananas, c),
status(bananas, grabbed).

• Only this last state can be known without
knowing the details of the Plan (i.e. how we’re going to get there).



18/11/04 AIPP Lecture 18: Planning 13

Representing Operators
• STRIPS operators are defined as:

– NAME: How we refer to the operator e.g. go(Agent, From, To).
– PRECONDITIONS: What states need to hold for the

operator to be applied. e.g. [at(Agent, From)].
– ADD LIST: What new states are added to the world as a

result of applying the operator e.g. [at(Agent, To)].
– DELETE LIST: What old states are removed from the world

as a result of applying the operator. e.g. [at(Agent, From)].
• We will specify operators within a Prolog predicate opn/4:

opn( go(Agent,From,To),
[at(Agent, From)],
[at(Agent, To)],
[at(Agent, From)] ).

Name
Preconditions
Add List
Delete List



18/11/04 AIPP Lecture 18: Planning 14

The Frame Problem
• When representing operators we make the assumption that the

only effects our operator has on the world are those specified
by the add and delete lists.

• In real-world planning this is a hard assumption to make as we
can never be absolutely certain of the extent of the effects of
an action.
– This is known in AI as the Frame Problem.

• Real-World systems, such as Shakey, are notoriously difficult
to plan for because of this problem. Plans must constantly
adapt based on incoming sensory information about the new
state of the world otherwise the operator preconditions will no
longer apply.

• The planning domains we will be working in our Toy-Worlds so
we can assume that our framing assumptions are accurate.



18/11/04 AIPP Lecture 18: Planning 15

All Operators

status(B,hanging)
at(B,X)
at(box,X)

status(B,grabbed)status(B,hanging)on(monkey,box)grab(B)
on(B,floor)
on(monkey,floor)
at(B,X)

on(monkey,B)on(monkey,floor)at(monkey,X)climb_on(B)
on(B,floor)
on(monkey,floor)

at(B,Y)at(B,X)at(B,X)
at(monkey,Y)at(monkey,X)at(monkey,X)push(B,X,Y)

on(monkey, floor)
at(monkey,Y)at(monkey,X)at(monkey,X)go(X,Y)
Add ListDelete ListPreconditionsOperator



18/11/04 AIPP Lecture 18: Planning 16

Finding a solution
1. Look at the state of the world:

• Is it the goal state? If so, the list of operators so far is the plan to
be applied.

• If not, go to Step 2.
2. Pick an operator:

• Check that it has not already been applied (to stop looping).
• Check that the preconditions are satisfied.
If either of these checks fails, backtrack to get another operator.

3. Apply the operator:
1. Make changes to the world: delete from and add to the world

state.
2. Add operator to the list of operators already applied.
3. Go to Step 1.



18/11/04 AIPP Lecture 18: Planning 17

Finding a solution in Prolog
• The main work of generating a plan is done by the solve/4

predicate.
% First check if the Goal states are a subset of the current state.

solve(State, Goal, Plan, Plan):-
is_subset(Goal, State)

solve(State, Goal, Sofar, Plan):-
opn(Op, Precons, Delete, Add), % get first operator
\+ member(Op, Sofar), % check for looping
is_subset(Precons, State), % check preconditions hold
delete_list(Delete, State, Remainder), % delete old states
append(Add, Remainder, NewState), % add new states
solve(NewState, Goal, [Op|Sofar], Plan).% recurse

• On first glance this seems very similar to a normal depth-first
search algorithm (unifies with first possible move and pursues it)



18/11/04 AIPP Lecture 18: Planning 18

Why use operators?
• In fact, solve/4 is performing depth-first search through the

space of possible actions but because actions are represented
as operators instead of predicate definitions the result is
significantly different:

– A range of different actions can be selected using the same
predicate opn/4.

– The effect an action has on the world is made explicit. This allows
actions to be chosen based on the preconditions of sub-goals:
directing our search towards the goal rather than searching blindly.

– Representing the state of the world as a list allows it to be
dynamically modified without the need for asserting and retracting
facts from the database.

• solve/4 tries multiple operators when forced to backtrack due to failure.
Database manipulation does not revert back to the original state during
backtracking so we couldn’t use it to generate a plan in this manner.



18/11/04 AIPP Lecture 18: Planning 19

Representing the plan
• solve/4 is a linear planner: it starts at the initial state and tries

to find a series of operators that have the cumulative effect of
adding the goal state to the world.

• We can represent its behaviour as a flow-chart.

• When an operator is applied the information in its preconditions
is used to instantiate as many of its variables as possible.

• Uninstantiated variables are carried forward to be filled in later.

on(monkey,floor),on(box,floor),at(monkey,a),
at(box,b),at(bananas,c),status(bananas,hanging)

go(a,X) Add: at(monkey,X)
Delete: at(monkey,a)

Initial
State

Operator to
be applied

Effect of
operator on
world state



18/11/04 AIPP Lecture 18: Planning 20

Representing the plan (2)
on(monkey,floor),on(box,floor),at(monkey,a),at
(box,b),at(bananas,c),status(bananas,hanging)

on(monkey,floor),on(box,floor),at(monkey,b),at
(box,b),at(bananas,c),status(bananas,hanging)

go(a,b)

push(box,b,Y)

Add: at(monkey,b)
Delete: at(monkey,a)

Add: at(monkey,Y), at(box,Y)
Delete: at(monkey,b), at(box,b)

monkey’s
location

is changed

• solve/4 chooses the push operator this time as it is the next
operator after go/2 stored in the database and go(a,X) is now
stored in the SoFar list so go(X,Y) can’t be applied again.

• The preconditions of push/3 require the monkey to be in the
same location as the box so the variable location, X, from the
last move inherits the value b.



18/11/04 AIPP Lecture 18: Planning 21

Representing the plan (3)
on(monkey,floor),on(box,floor),at(monkey,a),at
(box,b),at(bananas,c),status(bananas,hanging)

on(monkey,floor),on(box,floor),at(monkey,b),at
(box,b),at(bananas,c),status(bananas,hanging)

go(a,b)

push(box,b,Y)

Add: at(monkey,b)
Delete: at(monkey,a)

Add: at(monkey,Y), at(box,Y)
Delete: at(monkey,b), at(box,b)

on(monkey,floor),on(box,floor),at(monkey,Y),at
(box,Y),at(bananas,c),status(bananas,hanging)

climbon(monkey) Add: on(monkey,monkey)
Delete: on(monkey,floor)

• The operator only specifies that the monkey must climb on something
in the same location; not that it must be something other than itself!
• This instantiation fails once it tries to satisfy the preconditions for the
grab/1 operator. solve/4 backtracks and matches climbon(box) instead.

Whoops!



18/11/04 AIPP Lecture 18: Planning 22

Representing the plan (4)

on(monkey,box),on(box,floor),at(monkey,Y),at(b
ox,Y),at(bananas,c),status(bananas,hanging)

grab(bananas)

on(monkey,box),on(box,floor),at(monkey,c),at(b
ox,c),at(bananas,c),status(bananas,grabbed)

on(monkey,floor),on(box,floor),at(monkey,a),at
(box,b),at(bananas,c),status(bananas,hanging)

on(monkey,floor),on(box,floor),at(monkey,b),at
(box,b),at(bananas,c),status(bananas,hanging)

go(a,b)

push(box,b,Y)
on(monkey,floor),on(box,floor),at(monkey,Y),at
(box,Y),at(bananas,c),status(bananas,hanging)

climbon(box)

GOAL

For the
monkey to
grab the

bananas it
must be in
the same

location, so
the variable
location Y
inherits c.

This
creates a
complete

plan.Y = c

Y = c



18/11/04 AIPP Lecture 18: Planning 23

Monkey & Bananas Program



18/11/04 AIPP Lecture 18: Planning 24

Inefficiency of forwards planning
• Linear planners like this, that progress from the initial state to

the goal state can be unsuitable for problems with a large
number of operators.

• Searching backwards from the Goal state usually eliminates
spurious paths.
– This is called Means Ends Analysis.

Start

Goal

F
A B C
S E
G H X



18/11/04 AIPP Lecture 18: Planning 25

Means Ends Analysis
• The Means are the available actions.
• The Ends are the goals to be achieved.
• To solve a list of Goals in state State, leading to state

FinalState, do:
– If all the Goals are true in State then FinalState = State.

Otherwise do the following:
1. Select a still unsolved Goal from Goals.
2. Find an Action that adds Goal to the current state.
3. Enable Action by solving the preconditions of Action, giving

MidState.
4. MidState is then added as a new Goal to Goals and the

program recurses to step 1.
– i.e. we search backwards from the Goal state, generating

new states from the preconditions of actions, and
checking to see if these are facts in our initial state.



18/11/04 AIPP Lecture 18: Planning 26

Means Ends Analysis (2)
• Means Ends Analysis will usually lead straight from the Goal

State to the Initial State as the branching factor of the search
space is usually larger going forwards compared to backwards.

• However, more complex problems can contain operators with
overlapping Add Lists so the MEA would be required to choose
between them.
– It would require heuristics.

• Also, linear planners like these will blindly pursue sub-goals
without considering whether the changes they are making
undermine future goals.
– they need someway of protecting their goals.

• Both of these issues will be discussed in the next lecture.



18/11/04 AIPP Lecture 18: Planning 27

Summary
• A Plan is a sequence of actions that changes the state of the

world from an Initial state to a Goal state.
• Planning can be considered as a logical inference problem.
• STRIPS is a classic planning language.

– It represents the state of the world as a list of facts.
– Operators (actions) can be applied to the world if their

preconditions hold.
• The effect of applying an operator is to add and delete states

from the world.
• A linear planner can be easily implemented in Prolog by:

– representing operators as opn(Name,[PreCons],[Add],[Delete]).
– choosing operators and applying them in a depth-first manner,
– using backtracking-through-failure to try multiple operators.

• Means End Analysis performs backwards planning with is more efficient.


