
04/11/04 AIPP Lecture 12: I/O 1

Input/Output

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 12
04/11/04

04/11/04 AIPP Lecture 12: I/O 2

Input/Output in Prolog
• Input/output (I/O) is not a significant part of Prolog.
• Part of the reason for this is that the purpose of Prolog is

declarative programming, and input/output is intrinsically about
producing procedural side-effects.

• It is very hard to state what the logical reading of a Prolog
program is when it contains I/O functions.

• The I/O facilities I will present here are relatively simple. Each
implementation of Prolog has more advanced I/O facilities but
these will not be covered in this course.

• As I/O is not a core part of Prolog you will not be examined
upon it but you may need to use it in practical exercises.

04/11/04 AIPP Lecture 12: I/O 3

How I/O works in Prolog.
• At any time during execution of a Prolog program two files are

‘active’:
– a current input stream, and
– a current output stream.

• By default these are both set to user which means that
– all input will come from the user terminal (the shell window

in which Sicstus is loaded) and
– all output will be sent to the user terminal (i.e. write to the

screen).
• Multiple I/O streams can be initialised but only one input and

one output can be ‘active’ at any time (i.e. be read from or
written to).

04/11/04 AIPP Lecture 12: I/O 4

File-based I/O: write/1
• We have already used Prolog’s default output predicate

write/1.
• This prints a term to the current output stream.

?- write(c), write(u_l), write(8), write(r).
cu_l8r � writes to terminal by default.
yes
?- write([a,b,c,d]).
[a,b,c,d]
yes

• It will only accept Prolog terms so strings must be enclosed
within single quotation marks.
?- write(Hello World). ?- write(‘Hello World’).
syntax error Hello World

yes

04/11/04 AIPP Lecture 12: I/O 5

Formatting Output
• We can use built-in predicates to format the output:

– nl/0 = write a new line to the current output stream.
– tab/1 = write a specified number of white spaces to the

current output stream.
• this prints single spaces not actual tabs!

|?- write(a), tab(3), write(b), nl, tab(1), write(c),
tab(1), write(d), nl, tab(2), write(e).
a b
c d
e

yes
• We can add syntax by writing string fragments.

|?- Day=04, Mth=11, Year=04, write(Day), write('/'),
write(Mth), write('/'), write(Year).

4/11/4 Day=4, Mth=11, Year=4, yes

04/11/04 AIPP Lecture 12: I/O 6

Writing ASCII characters
• Instead of writing syntax as strings we can use the

corresponding ASCII codes (see http://www.asciitable.com/).
• An ASCII code is a number between 1 and 127 that refers to a

typographical character.
– A-Z = 65-90
– a-z = 97-122

• put/1 takes a single ASCII code as an argument and writes
the corresponding character to the current output stream.
| ?- put(65),put(44),put(66),put(46).
A,B.
yes

• This can be useful as ASCII codes can have arithmetic
operations performed upon them:
| ?- X=32, put(65+X), put(44), put(66+X), put(46).
a,b. � By adding 32 to each code we can change case.
X = 32 ? yes

04/11/04 AIPP Lecture 12: I/O 7

ASCII codes

04/11/04 AIPP Lecture 12: I/O 8

Writing lists of characters
• Instead of just writing single terms it is often useful to write out

the contents of a list.
• We can define a recursive predicate writelist/1 to do this:

writelist([]).
writelist([H|T]):-

write(H),
writelist(T).

|?- X=‘Bob’, writelist([‘The’,’ ‘,man,’ was called ‘,X,’.’]).
The man was called Bob.
yes

• We can also define a predicate to translate lists of ASCII codes:
putlist([]). | ?- putlist([65,44,66,46]).
putlist([H|T]):- A,B.

put(H), yes
putlist(T).

04/11/04 AIPP Lecture 12: I/O 9

Writing lists of characters (2)
• Either of these could be made to automatically format our

output as we wished.
writelist2([H]):- writefacts([]).

write(H), put(46), !. writefacts([[X,Y]|T]):-
writelist2([H|T]):- write(X), write('('),

write(H), tab(1), write(Y), write(')'),
writelist2(T). write('.'), nl,

writefacts(T).

| ?- X='Bob', writelist2(['The',man,was,called,X]).
The man was called Bob.
X = 'Bob' ? ;
no
| ?- writefacts([[big,blue],[tickled,pink]]).
big(blue).
tickled(pink).
yes

04/11/04 AIPP Lecture 12: I/O 10

Changing output stream
• We can redirect our output to a specific file using tell/1.

tell(Filename). or
tell(‘path/from/current/dir/to/Filename’).

• This tells Prolog to send all output to the specified file. If the file
doesn’t exists it will be created. If the file already exists it will
be overwritten.

• The current output stream can be identified using telling/1.
• This file will remain as the current output stream until either:

– another output stream is opened using tell/1, or
– the current output stream is closed using told/0 and the

output stream returned to user.
• This file remains as the current output stream as long as

Sicstus remains loaded or it is explicitly closed with told/0.

04/11/04 AIPP Lecture 12: I/O 11

| ?- write('Write to terminal').
Write to terminal
yes
| ?- telling(X).
X = user ?
yes
| ?- tell('demo/test').
yes � file is created or overwritten
| ?- telling(X).
X = 'demo/test' ?
yes
| ?- write('Now where does it go?').
yes � Text doesn’t appear in file until…
| ?- told.
yes � it is closed.
| ?- write('Oh, here it is!').
Oh, here it is!
yes

04/11/04 AIPP Lecture 12: I/O 12

Reading input: read/1
• Now that we know how to control our output we need to do the

same for our input.
• The default input stream is the user terminal.
• We can read terms from the terminal using the command

read/1.
– this displays a prompt ‘|:’ and waits for the user to input a

term followed by a full-stop.
| ?- write('What is your name?'), nl, read(X),
write('Greetings '), write(X).

What is your name?
|: tim.
Greetings tim
X = tim ?
yes

04/11/04 AIPP Lecture 12: I/O 13

Reading input: read/1 (2)
• read/1 can only recognise Prolog terms finished with a full-stop.

|?- read(X).
|: hello

� Waits for full-stop to finish term.
. � Finds full-stop and succeeds.

X = hello?
yes

• Therefore, strings of text must be enclosed in single quotes.
|?- read(X). |?- read(X).
|: Hi there!. |: ‘Hi there!’.
syntax error X = ‘Hi there!’?

yes
• Variables are translated into Prolog’s internal representation.

|?- read(X).
|: blue(Moon).
X = blue(_A)?
yes

04/11/04 AIPP Lecture 12: I/O 14

Different Quotes
• When we are reading strings there are two ways we can input

them:
– if we enclose them in single quotes (e.g. ‘Hi Bob!’) the string

is read verbatim.
| ?- read(X).
|: 'Hi bob!'.
X = 'Hi bob!' ?
yes

– if we enclose them in double quotes (e.g. “Hi Bob!”) the string
is interpreted into the corresponding list of ASCII codes.
| ?- read(X).
|: "Hi bob!".
X = [72,105,32,98,111,98,33] ?
yes

• It is important to use the right quotes as otherwise you won’t be
able to process the input correctly.

04/11/04 AIPP Lecture 12: I/O 15

name/2
• This is not the only way to convert terms into strings of ASCII

codes, the built-in predicate name/2 also does this.
• We can translate any Prolog term (except a variable) into a list of

corresponding ASCII codes using name/2.
|?- name(aAbB,L).
L = [97,65,98,66] ?
yes
|?- X=‘Make me ASCII’, name(X,L).
L = [77,97,107,101,32,109,101,32,65,83,67,73,73],
yes

• Or convert lists of ASCII codes into Prolog terms.
|?- name(C, [72,101,108,108,111,32,87,111,114,108,100]).
C = ‘Hello World’,
yes

• These lists are useful as we can use them to segment a
sentence and create the input for our DCG parser (next lecture).

04/11/04 AIPP Lecture 12: I/O 16

get-ting characters from input
• As well as reading whole terms from the input we can also

read individual characters.
• get0/1 (= get-zero) reads a character from the current input

stream and returns the character’s ASCII code.
| ?- get0(X). | ?- get0(X).
|: A |: h
X = 65? X = 32? Top-level options:…
yes

• get/1 has virtually the same function except that it will skip
over any spaces to find the next printable character.

get(X). get(X).
|: A |: h
X = 65? X = 104 ?
yes yes

• As both are just reading characters, not terms, they don’t need
to be terminated with a full-stop.

white spaces

ASCII code for a space

04/11/04 AIPP Lecture 12: I/O 17

see-ing an Input file
• get/1 and get0/1 are mostly used for processing text files.

– read/1 can only read terms so it would be unable to read a
file of flowing text.

– get/1 and get0/1 will read each character and return its
ASCII code irrespective of its Prolog object status.

• To change our input from a user prompt to a file we use see/1
see(Filename). or
see(‘path/from/current/dir/to/Filename’).

• We can identify the current input stream using seeing/1.
• This file will remain as the current input stream until either:

– another input stream is opened using see/1, or
– the current input stream is closed using seen/0 returning it

to user.

04/11/04 AIPP Lecture 12: I/O 18

read-ing input files
• Once the input file is activated using see/1 we can process its

content.
• If the input file contains Prolog terms then we can read them one

at a time
Input file ‘colours’ contains: big(blue).

tickled(pink).
red_mist.

|?- see(‘demo/colours’),read(X),read(Y),read(Z).
X = big(blue),
Y = tickled(pink),
Z = red_mist ?
yes

• The file is processed in order and the interpreter remembers
where we were so every new call to read/1 reads the next term.

• This continues until end_of_file is reached or input is seen/0.

04/11/04 AIPP Lecture 12: I/O 19

Multiple I/O streams
• Managing multiple I/O streams is difficult using file-based I/O

predicates.
• write/1 and read/1 work on the current output and input files

respectively. You can not specify which file to read from or write
to.

• Output is not written to a file until it is closed (told/0) but told only
closes the current output stream. Therefore, each output file must
be re-activated (tell/1) before it can be closed.
– This is a rather verbose way to do it.

• If we want to use multiple input and output files we need to use
stream-based I/O instead.

• A stream is a interpreter generated pointer for a specific file. It
allows us to dynamically access the file and move about within it.

04/11/04 AIPP Lecture 12: I/O 20

Stream I/O predicates
• There are a vast number of complex stream handling

predicates (see Sicstus manual). Here are just the basics:
• open/3 opens a file for reading or writing. Its arguments are:

– the file specification (the name of the file);
– the mode in which the file is to be opened

(read/write/append);
– the stream name (generated by the interpreter). This takes

the form '$stream'(2146079208).
e.g. open(‘demo/test’,append,Stream).

• The stream is initialised when the file is opened, and thereafter
the file is referred to using the stream pointer (whatever
‘Stream’ unified with), not using its name.

04/11/04 AIPP Lecture 12: I/O 21

Stream I/O predicates (2)
• current_input/1 succeeds if its argument is the current

input stream.
• current_output/1 succeeds if its argument is the current

output stream.

• set_input/1 sets the current input stream to be the stream
given as its argument (equivalent of see/1).

• set_output/1 sets the current output stream to be the
stream given as its argument (equivalent of tell/1).

• Once a stream is set as the current input/output then it can be
written to using write/1 and read from using read/1.

04/11/04 AIPP Lecture 12: I/O 22

Stream I/O predicates (3)
• However, using streams you don’t need to set a current I/O as

you can refer directly to the streams using their stream pointer.
• read/2 reads a term from a stream. Its arguments are:

– the stream to read from;
– the term to read (or the variable to put the term into).
e.g. |?- open(file1,read,File1), read(File1,X).

• write/2 writes a term to a stream. Its arguments are:
– the stream to write to;
– the term to write to the stream.
e.g. |?- open(file2,write,File2), write(File2,X).

• There are also two argument versions of other file-based I/O
predicates that allow you to specify the target stream (e.g. nl/1,
tab/2, get/2, get0/2, put/2).

04/11/04 AIPP Lecture 12: I/O 23

Closing a stream
• As with file-based I/O the output file is not modified until it is

closed but now we can refer to it directly using the stream
pointer and the command close/1.

| ?- open('demo/test1',write,Test), write(Test,'Hello'),
close(Test).

Test = '$stream'(2146079648) ?
yes

• There are many more stream I/O predicates built-in to Sicstus
Prolog but they vary across Prolog implementations so you are
not required to know them.
– Look at the Sicstus manual for more information.

• File-based I/O is the traditional method of performing I/O in
Prolog and it is more universally known even though it has
serious limitations.

04/11/04 AIPP Lecture 12: I/O 24

Built-in I/O Predicates
write/[1,2] write a term to the current output stream.
nl/[0,1] write a new line to the current output stream.
tab/[1,2] write a specified number of white spaces to the current

output stream.
put/[1,2] write a specified ASCII character.
read/[1,2] read a term from the current input stream.
get/[1,2] read a printable ASCII character from the input stream

(i.e. skip over blank spaces).
get0/[1,2] read an ASCII character from the input stream
see/1 make a specified file the current input stream.
seeing/1 determine the current input stream.
seen/0 close the current input stream and reset it to user.
tell/1 make a specified file the current output stream.
telling/1 determine the current output stream.
told/0 close the current output stream and reset it to user.
name/2 arg 1 (an atom) is made of the ASCII characters listed in

arg 2

