Input/Output

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith
Lecture 12
04/11/04

ULUG

)
!

\l 04/11/04 AIPP Lecture 12: 1/0

e

a

!

DA D

Input/Output in Prolog

Input/output (I/0) is not a significant part of Prolog.

Part of the reason for this is that the purpose of Prolog is
declarative programming, and input/output is intrinsically about
producing procedural side-effects.

It is very hard to state what the logical reading of a Prolog
program is when it contains 1/O functions.

The /O facilities | will present here are relatively simple. Each
implementation of Prolog has more advanced /O facilities but
these will not be covered in this course.

As 1/O is not a core part of Prolog you will not be examined
upon it but you may need to use it in practical exercises.

04/11/04 AIPP Lecture 12: 1/0 2

L

ﬂ How |/O works in Prolog.

« At any time during execution of a Prolog program two files are
‘active’:
— a current input stream, and
— a current output stream.

a

« By default these are both set to user which means that

— all input will come from the user terminal (the shell window
in which Sicstus is loaded) and

— all output will be sent to the user terminal (i.e. write to the
screen).

a

« Multiple I/O streams can be initialised but only one input and
one output can be ‘active’ at any time (i.e. be read from or
written to).

)
Rl

I 04/11/04 AIPP Lecture 12: 1/0 3

ULUG

!

DA D

File-based I/O: write/1

We have already used Prolog’s default output predicate
write/1.

This prints a term to the current output stream.

?- write(c), write(u 1), write(8), write(r).

cu 18r < writes to terminal by default.
yes

?- write([a,b,c,d]).

[2a,b,c,d]

yes

It will only accept Prolog terms so strings must be enclosed
within single quotation marks.

?- write (Hello World). ?- write(‘'Hello World’).
syntax error Hello World
yes

04/11/04 AIPP Lecture 12: 1/0 4

Formatting Output

» We can use built-in predicates to format the output:
— nl/0 = write a new line to the current output stream.

— tab/1 = write a specified number of white spaces to the
current output stream.

* this prints single spaces not actual tabs!

| ?- write(a), tab(3), write(b), nl, tab(l), write(c),
tab(l), write(d), nl, tab(2), write(e).

a b
cd
e

ULUG

yes

We can add syntax by writing string fragments.——

| - Day=04, Mth=11, Year=04, write(Day), write('/'),
write (Mth), write('/'), write(Year).

)
Rl

1 4/11/4 Day=4, Mth=11, Year=4, yes

I 04/11/04 AIPP Lecture 12: 1/0

!

ULUG

D)

Writing ASCII characters

* Instead of writing syntax as strings we can use the
corresponding ASCII codes (see http://www.asciitable.com/).

 An ASCII code is a number between 1 and 127 that refers to a
typographical character.
— A-Z=65-90
— a-z=97-122
- put/1 takes a single ASCII code as an argument and writes
the corresponding character to the current output stream.
| ?- put(65) ,put(44) ,put(66) ,put(46).
A,B.

yes

« This can be useful as ASCII codes can have arithmetic
operations performed upon them:
| ?- X=32, put(65+X), put(44), put(66+X), put(46).
a,b. < By adding 32 to each code we can change case.
X = 32 ? yes

04/11/04 AIPP Lecture 12: 1/0 6

UL UG

!

DA D

ASCII codes

Decr HxQct Char Dec Hy Oct Himl Chr [Dec Hy Oct Html Chr| Dec Hx Oct Himl Chr
0 0 000 NUL f{rall) 32 20 040 3pace| 64 40 100 s#6d; @ g 60 140 `
1 1 001 30H (start of heading) 33 21 041 =#33; ! 65 41 101 A 4 a7 &6l 141 =#97; a
2 2 002 5Tx (start of text) 34 2z 042 " 7 66 42 10Z &«#66; B 95 52 142 s#93; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 /g3 143] <
4 4 004 EOT {end of transmission) 36 24 044 &$367 % 68 44 104 #68; D |100 64 144 &#l00; d
5 5 005 ENQ (endquiry) 37 25 045 %: % 69 45 105 E E |101 65 145 «#101; e
6 6 006 ACKE [acknowledge) 38 26 046 ƃ & 70 46 106 «#70: F |102 66 146 s#l02; £
7 7 007 BEL (bell) 39 27 047 ' ! 71 47 107 &«#71; G |103 &7 147 g 9
& & 0l0 BS (backspace) 40 23 050 &#$40; (72 45 110 =#72; H |104 65 150 «#104; h
9 9 0ll TAE (horizontal tahb) 41 z9 051 =#41l:) 73 49 111 I: I |105 &9 151 i 1
10 &4 012 LF (NL line feed, new line)| 42 24 052 &#dd; ¥ 74 44 112 «#74; T (106 g4 152 &#l06:]
11 B 013 VT (wertical tah) 43 2B 053 + + 75 4B 113 K: K |107 6B 153 k: k
12 C 0l4 FF (NP form feed, new page)| 44 2ZC 054 , , 76 4C 114 «#76; L |108 6C 154 s#108; 1
13 D 015 CR [carriage return) 45 ZD 055 d5; - 77 4D 115 M M (109 6D 155
%9; I
14 E 0le 50 (shift out) 4n ZE 056 . . 78 4E 116 N N |110 6E 156 n: 1
15 F 017 3I (shift in) 47 2F 057 «#47; / 79 4AF 117 O 0 |111 &F 157 o o
16 10 020 DLE (data link escape) 45 30 0a0 0 0 g0 50 120 &«#80; P |11Z 70 la0 &#l1Z:;: p
17 11 021 DC1l (dewice control 1) 49 31 0Al 1:; 1 g1 51 121 &«#81; 0 |113 71 161 &=#113:; 9
15 12 022 DCE [(dewvice control 2£) 50 3Z 06z 2 2 g2 52 122 R R |114 72 162 &#l14; ¢
19 13 023 DC3 (device control 3) 51 33 063 :; 3 g3 53 123 S 5 |115 73 163 s =5
Z20 14 024 DC4 [(dewvice control 4) 52 34 064 «#32; 4 g4 54 124 «#54; T |116 74 164 &#lla: ©
21 15 025 NAE (negative acknowledoe) 53 35 065 5 5 85 55 125 ͕ T |117 75 165 u: 1
ZZ 16 026 3YN [(synchronous idle) 54 36 066 "d; 6 g6 56 126 V |115 76 lea &#llG: W
23 17 027 ETE (end of trans. blaock) 85 37 067 7: 7 87 57 127 9 W |119 77 167 &#l19: w
24 15 030 CAN [cancel) 56 33 070 #5672 5 85 58 130 ſ X |120 78 170 &#l:20; =
25 19 031 EM f{end of medium) 87 39 071 &«$57: 9 89 59 131 «#59; Y |121 79 171 =#l2l: ¥
26 14 032 SUE (substitute) 5G 34 072 : 90 LA 132 Z 2 (122 TA 172 &#l2z2: =
27 1B 033 ESC (escape) 59 3B 073 ; ; 9l 5B 133 [[|123 7B 173 =#123; |
28 1C 034 F3 (file separator) G0 3C 074 < < 9z EC 134 \ % (124 7C 174 «#124;
29 1D 035 G5 [group Separator) al 3D 075 &#F6l; = 95 5D 135 «#93;] [l25 7D 175 &#l25; |}
30 1E 036 B3 (record separator) 62 3E 076 E;7 = 294 5E 136 &#°94:; * (126 TE 176 &#lE26:; ~
51 1F 037 US [(unit separator) 63 3F 077 ? 7 95 5F 137 _ _ |127 7F 177 DEL

04/11/04

AIPP Lecture 12: 1/0

Source: www.ascitable.com

Writing lists of characters

» Instead of just writing single terms it is often useful to write out
the contents of a list.

We can define a recursive predicate writelist/1 to do this:

writelist([]).

writelist([H|T]) :-
write (H),
writelist(T) .

| ?- X=‘Bob’, writelist([‘'The’,’ ‘,man,’ was called ',X,’.’1]).

The man was called Bob.

O0L0G

yes
\ We can also define a predicate to translate lists of ASCII codes:
(—\\(—-J putlist([]) . | ?- putlist([65,44,66,46]).
' putlist ([H|T]) :- A,B.
put (H) , yes
r—\] putlist(T).

I 04/11/04 AIPP Lecture 12: 1/0 8

!

ULUG

BAD

Writing lists of characters (2)

Either of these could be made to automatically format our
output as we wished.

writelist2 ([H]) : - writefacts([]).
write(H) , put(46), !. writefacts ([[X,Y]IT]) :-

writelist2 ([H|T]) :-
write(H), tab(l), write(Y), write(')'),
writelist2(T). write('.'), nl,

writefacts (T) .

write (X), write(' ('),

| ?- X="Bob', writelist2(['The',man,was,called, X]).
The man was called Bob.
X = '"Bob' ? ;

no

| ?- writefacts([[big,blue],[tickled,pink]]).
big(blue) .

tickled (pink) .

yes

04/11/04 AIPP Lecture 12: 1/0

Changing output stream

* We can redirect our output to a specific file using tell/1.
tell (Filename). oOr
tell (‘path/from/current/dir/to/Filename’) .

e

» This tells Prolog to send all output to the specified file. If the file
doesn’t exists it will be created. If the file already exists it will
be overwritten.

The current output stream can be identified using telling/1.

S

This file will remain as the current output stream until either:
— another output stream is opened using tell/1, or

— the current output stream is closed using tol1d/0 and the
output stream returned to user.

« This file remains as the current output stream as long as
] Sicstus remains loaded or it is explicitly closed with to1d/0.

)
R

I 04/11/04 AIPP Lecture 12: 1/0 10

L

-

LU

I

DA D

| ?- write('Write to terminal').

Write to terminal
yes
| ?- telling(X).

X = user ?

yes

| ?- tell('demo/test').
yes

| ?- telling(X).

X = 'demo/test' ?

yes

< file is created or overwritten

| ?- write('Now where does it go?').

yes
| ?- told.

yes

< Text doesn’t appear in file until...

< itis closed.

| ?- write('Oh, here it is!').

Oh, here it is!

yes

04/11/04

AIPP Lecture 12: 1/0

11

O0L0OG

)
!

Reading input: read/1

Now that we know how to control our output we need to do the
same for our input.

The default input stream is the user terminal.

We can read terms from the terminal using the command
read/1l.

— this displays a prompt ‘|:;" and waits for the user to input a
term followed by a full-stop.

| ?- write('What is your name?'), nl, read(X),
write ('Greetings '), write(X).

What is your name?
| - tim.

Greetings tim

X = tim ?

yes

I 04/11/04 AIPP Lecture 12: 1/0 12

Reading input: read/1 (2)

« read/1 can only recognise Prolog terms finished with a full-stop.

,j
—

| ?- read(X).
‘ | : hello
< Waits for full-stop to finish term.
< Finds full-stop and succeeds.
X = hello?
yes
« Therefore, strings of text must be enclosed in single quotes.
| ?- read(X). | ?- read(X).
‘ | : Hi there!. | : ‘Hi there!’.
syntax error X = ‘Hi there!’?
yes
‘ « Variables are translated into Prolog’s internal representation.
{—-J | ?- read(X).
i

| : blue (Moon).
X = blue(_A)"?

] yes

]

04/11/04 AIPP Lecture 12: 1/0 13

Different Quotes

 When we are reading strings there are two ways we can input
them:

— if we enclose them in single quotes (e.g. ‘Hi Bob!’) the string
Is read verbatim.
| ?- read(X).
|: 'Hi bob!'.
X = '"Hi bob!' ?
yes

— if we enclose them in double quotes (e.g. “Hi Bob!”) the string
IS interpreted into the corresponding list of ASCII codes.
| ?- read(X).
|: "Hi bob!".
X = [72,105,32,98,111,98,33] ?
yes

« |tis important to use the right quotes as otherwise you won’t be
able to process the input correctly.

ULUG

)
!

|

I 04/11/04 AIPP Lecture 12: 1/0 14

ale

name/2

This is not the only way to convert terms into strings of ASCII
codes, the built-in predicate name/2 also does this.

We can translate any Prolog term (except a variable) into a list of
corresponding ASCII codes using name /2.

| - name (aAbB,L) .

L = [97,65,98,66] °?

yes

U

-

!

| ?- X=‘'Make me ASCII’, name(X,L).
L=1[77,97,107,101,32,109,101,32,65,83,67,73,73],
yes

Or convert lists of ASCII codes into Prolog terms.

|?- name(C, [72,101,108,108,111,32,87,111,114,108,100]) .
C = ‘Hello World’,
yes

DA D

mE—

« These lists are useful as we can use them to segment a
sentence and create the input for our DCG parser (next lecture).

I 04/11/04 AIPP Lecture 12: 1/0 15

ULUG

!

DA D

get-ting characters from input

As well as reading whole terms from the input we can also
read individual characters.

get0/1 (= get-zero) reads a character from the current input
stream and returns the character’'s ASCII code.

| ?- getO (X). | ?- getO(X). _
white spaces
|: A l:v v vh
X = 657 X = 32? Top-level options:..
yes ASCII code for a space

get/1 has virtually the same function except that it will skip
over any spaces to find the next printable character.

get (X) . get (X) .

|: A | : h
X = 657 X =104 ?
yes yes

As both are just reading characters, not terms, they don’t need
to be terminated with a full-stop.

04/11/04 AIPP Lecture 12: 1/0 16

see-ing an Input file

« get/1 and get0/1 are mostly used for processing text files.

— read/1 can only read terms so it would be unable to read a
file of flowing text.

- get/1 and get0/1 will read each character and return its
ASCII code irrespective of its Prolog object status.

« To change our input from a user prompt to a file we use see/1
see (Filename). oOr

see (‘path/from/current/dir/to/Filename’) .

ULUG

* We can identify the current input stream using seeing/1.

This file will remain as the current input stream until either:
— another input stream is opened using see/1, or

— the current input stream is closed using seen/0 returning it
] to user.

)
!

04/11/04 AIPP Lecture 12: 1/0 17

ULUG

!

DA D

read-ing input files

* Once the input file is activated using see/1 we can process its
content.

« If the input file contains Prolog terms then we can read them one
at a time

Input file ‘colours’ contains: big(blue) .
tickled (pink) .

red_mist.

| ?- see(‘demo/colours’) ,read(X),read(Y),h read(Z).
X = big(blue),
Y = tickled(pink),
Z = red mist ?
yes
» Thefile is processed in order and the interpreter remembers
where we were so every new call to read/1 reads the next term.

« This continues until end of file is reached or input is seen/O0.

04/11/04 AIPP Lecture 12: 1/0 18

L

3

ama

)
!

Multiple I/O streams

Managing multiple I/O streams is difficult using file-based 1/0O
predicates.

write/1 and read/1 work on the current output and input files
respectively. You can not specify which file to read from or write
to.

Output is not written to a file until it is closed (told/0) but told only
closes the current output stream. Therefore, each output file must
be re-activated (tell/1) before it can be closed.

— This is a rather verbose way to do it.

If we want to use multiple input and output files we need to use
stream-based I/0O instead.

A stream is a interpreter generated pointer for a specific file. It
allows us to dynamically access the file and move about within it.

04/11/04 AIPP Lecture 12: 1/0 19

ULUG

)
!

Stream 1/O predicates

There are a vast number of complex stream handling
predicates (see Sicstus manual). Here are just the basics:

open/ 3 opens a file for reading or writing. Its arguments are:
— the file specification (the name of the file);

— the mode in which the file is to be opened
(read/write/append);

— the stream name (generated by the interpreter). This takes
the form '$stream'(2146079208).

e.g. open(‘demol/test’,append,Stream).

The stream is initialised when the file is opened, and thereafter
the file is referred to using the stream pointer (whatever
‘Stream’ unified with), not using its name.

04/11/04 AIPP Lecture 12: 1/0 20

Stream 1/O predicates (2)

current input/1 succeeds if its argument is the current
input stream.

- current output/1 succeeds if its argument is the current
output stream.

- set input/1 sets the current input stream to be the stream
given as its argument (equivalent of see/1).

- set output/1 sets the current output stream to be the
stream given as its argument (equivalent of tell/1).

OLOG

Once a stream is set as the current input/output then it can be
written to using write/1 and read from using read/1.

1

BAD

I 04/11/04 AIPP Lecture 12: 1/0 21

ULUG

I

)|)

Stream |/O predicates (3)

However, using streams you don’t need to set a current I/O as
you can refer directly to the streams using their stream pointer.

read/2 reads a term from a stream. Its arguments are:
— the stream to read from;
— the term to read (or the variable to put the term into).
e.g. |?- open(file1,read,File1), read(File1,X).

write/2 writes a term to a stream. Its arguments are:
— the stream to write to;
— the term to write to the stream.
e.g. |?- open(file2,write,File2), write(File2,X).

There are also two argument versions of other file-based 1/0O
predicates that allow you to specify the target stream (e.g. nl/1,
tab/2, get/2, get0/2, put/2).

04/11/04 AIPP Lecture 12: 1/0 22

ULUG

)
Rl

Closing a stream

As with file-based I/O the output file is not modified until it is

closed but now we can refer to it directly using the stream
pointer and the command close/1.

| ?- open('demo/testl',write,Test), write(Test, 'Hello'),
close (Test) .

Test = 'S$stream' (2146079648) ?
yes

There are many more stream 1/O predicates built-in to Sicstus
Prolog but they vary across Prolog implementations so you are
not required to know them.

— Look at the Sicstus manual for more information.

File-based I/O is the traditional method of performing I/O in
Prolog and it is more universally known even though it has
serious limitations.

04/11/04 AIPP Lecture 12: 1/0 23

Built-in 1/0O Predicates

write/[1,2] write a term to the current output stream.
nl/[0,1] write a new line to the current output stream.

tab/[1,2] write a specified number of white spaces to the current
output stream.

put/[1,2] write a specified ASCII character.
read/[1,2] read a term from the current input stream.

get/[1,2] read a printable ASCII character from the input stream
(i.e. skip over blank spaces).

get0/[1,2] read an ASCII character from the input stream

UL UG

see/1 make a specified file the current input stream.
seeing/1 determine the current input stream.
r"‘(_‘ seen/0 close the current input stream and reset it to user.
. tell/1 make a specified file the current output stream.
telling/1 determine the current output stream.
told/0 close the current output stream and reset it to user.
r] name/2 arg 1 (an atom) is made of the ASCII characters listed in

| 04/ Eirey 2 AIPP Lecture 12: 1/0 24

