
01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 1

Parsing and Semantics
in DCGs

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 11
01/11/04

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 2

Definite Clause Grammars Recap
• We can use the --> DCG operator in Prolog to define grammars

for any language.
• The grammar rules consist of non-terminal symbols (e.g. NP,

VP) which define the structure of the language and terminal
symbols (e.g. Noun, Verb) which are the words in our language.

• The Prolog interpreter converts the DCG notation into
conventional Prolog code using difference lists.

• We can add arguments to non-terminal symbols in our grammar
for any reason (e.g. number agreement).

• We can also add pure Prolog code to the right-hand side of a
DCG rule by enclosing it in { }.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 3

DCG Recognisers
• We can write simple grammars using the DCG notation that

recognise if a string of words (represented as a list of atoms)
belongs to the language.

sentence --> noun, verb_phrase.
verb_phrase --> verb, noun.
noun --> [bob].
noun --> [david].
noun --> [annie].
verb --> [likes].
verb --> [hates].
verb --> [runs].

|?- sentence([annie, hates, david],[]).
yes

• However, this is of limited usefulness. Ideally we would like to
interpret the input in some way: to understand it, parse it, or
convert it into some other more useful form.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 4

DCG: Parsers
• A parser represents a string as some kind of structure that can

be used to understand the role of each of its elements.
• A common representation is a parse tree which shows how input

breaks down into its grammatical constituents.

[the, pumpkin, scares, the, lecturer]

sentence

noun_phrase verb_phrase

determiner noun verb noun_phrase

determiner noun

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 5

Two parsing techniques
• There are generally two ways of using DCGs to build a

structural representation of the input.
1. Computing the structure once the constituents of the input have

been identified.
• Partial results can be passed via extra arguments in non-terminal

symbols and computed to create a suitably representative result.
• For example, we might want our DCG to represent a number

expressed as a string as an integer.
number(N) --> digit(D), [hundred], {N is (D * 100)}.
digit(1) --> [one].

|?- number(X, [one, hundred], []).
X = 100?
yes

• This is only good for summary representations; it doesn’t tell us
anything about the internal structure of our input.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 6

Two parsing techniques (2)
2. The more popular method is to use unification to identify the

grammatical role of each word and show how they combine into
larger grammatical structures.
• This creates a representation similar to a parse tree.
sentence(s(NP,VP)) -->

noun_phrase(NP), verb_phrase(VP).

• Which can be read as:
The parsed structure of a sentence must be s(NP,VP),

where NP is the parsed structure of the noun phrase, and
VP is the parsed structure of the verb phrase.

• The rules for NPs and VPs would then need to be augmented
so that they also represent a parse of their constituents in the
head of the rule.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 7

Example: parsing English
• So lets take a small grammar which defines a tiny fragment of

the English language and add arguments so that it can produce
a parse of the input.

Original grammar rules:
sentence --> noun_phrase(Num), verb_phrase(Num).

noun_phrase(Num) --> determiner(Num), noun_phrase2(Num).
noun_phrase(Num) --> noun_phrase2(Num).

noun_phrase2(Num) --> adjective, noun_phrase2(Num).
noun_phrase2(Num) --> noun(Num).

verb_phrase(Num) --> verb(Num).
verb_phrase(Num) --> verb(Num), noun_phrase(_).

• Note the use of an argument to enforce number agreement
between noun phrases and verb phrases.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 8

Example: parsing English (2)
• Now we can add a new argument to each non-terminal to

represent its structure.
sentence(s(NP,VP)) -->

noun_phrase(NP,Num), verb_phrase(VP,Num).

noun_phrase(np(DET, NP2), Num) -->
determiner(DET, Num), noun_phrase2(NP2, Num).

noun_phrase(np(NP2), Num) -->
noun_phrase2(NP2, Num).

noun_phrase2(np2(N), Num) --> noun(N, Num).

noun_phrase2(np2(ADJ, NP2), Num) -->
adjective(ADJ), noun_phrase2(NP2, Num).

verb_phrase(vp(V), Num) --> verb(V, Num).

verb_phrase(vp(V, NP), Num) -->
verb(V, Num), noun_phrase(NP, _).

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 9

Example: parsing English (3)
• We also need to add extra arguments to the terminal symbols

i.e. the lexicon.
determiner(det(the), _) --> [the].
determiner(det(a), singular) --> [a].

noun(n(pumpkin), singular) --> [pumpkin].
noun(n(pumpkins), plural) --> [pumpkins].
noun(n(lecturer), singular) --> [lecturer].
noun(n(lecturers), plural) --> [lecturers].

adjective(adj(possessed)) --> [possessed].

verb(v(scares), singular) --> [scares].
verb(v(scare), plural) --> [scare].

• We represent the terminal symbols as the actual word from the
language and its grammatical role. The rest of the grammatical
structure is then built around these terminal symbols.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 10

Using the parser.
• Now as a consequence of recognising the input, the grammar

constructs a term representing the constituent structure of the
sentence.

• This term is the 1st argument of sentence/3 with the 2nd

argument the input list and the 3rd the remainder list (usually []).
|?-sentence(Struct,[the, pumpkin, scares, the, lecturer],[]).

Struct = s(np(det(the), np2(n(pumpkin))),
vp(v(scares), np(det(the), np2(n(lecturer)))))?

yes
• We can now generate all valid sentences and their structures by

making the 2nd argument a variable.
|?-sentence(X,Y,[]).

X = s(np(det(the),np2(adj(possessed),np2(n(lecturer)))),
vp(v(scares),np(det(the),np2(n(pumpkin))))),

Y= [the,possessed,lecturer,scares,the,pumpkin]?;
……etc

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 11

Extracting meaning using a DCG
Bratko, I “Prolog: Programming for Artificial intelligence” pg 568

• Representing the structure of a sentence allows us to see the
beginnings of semantic relationships between words.

• Ideally we would like to take these relationships and represent
them in a way that could be used computationally.

• A common use of meaning extraction is as a natural language
interface for a database. The database can then be questioned
directly and the question converted into the appropriate internal
representation.

• One widely used representation is Logic as it can express subtle
semantic distinctions:
– e.g. “Every man loves a woman.” vs. “A man loves every woman.”

• Therefore, the logical structures of Prolog can also be used to
represent the meaning of a natural language sentence.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 12

Logical Relationships
• Whenever we are programming in Prolog we are representing

meaning as logical relationships:
– e.g. “John paints.” = paints(john).
– e.g. “John likes Annie” = likes(john,annie).

• It is usually our job to make the conversion between natural
language and Prolog but it would be very useful if a DCG could
do it for us.

• To do this we need to add Prolog representations of meaning
(e.g. paints(john)) to the non-terminal heads of our grammar.
– Just as we added parse structures to our previous grammar,

e.g. sentence(s(NP,VP)) --> noun_phrase(NP,Num),
verb_phrase(VP,Num).

– We can construct predicates that represent the relationship between
the terminal symbols of our language:
e.g. intrans_verb(Actor,paints(Actor)) --> [paints]

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 13

Adding meaning to a simple grammar
• Here is a simple DCG to recognise these sentences:

sentence --> noun_phrase, verb_phrase
noun_phrase --> proper_noun.
verb_phrase --> intrans_verb.
verb_phrase --> trans_verb, noun_phrase.
intrans_verb --> [paints].
trans_verb --> [likes].
proper_noun --> [john].
proper_noun --> [annie].

| ?- sentence([john,likes,annie],[]).
yes
• To encode meaning we first need to represent nouns as atoms.

Prolog atoms are existential statements
e.g. john = “There exists an entity ‘john’ ”.

proper_noun(john) --> [john].
proper_noun(annie) --> [annie].

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 14

Adding meaning to a simple grammar (2)
• Now we need to represent the meaning of verbs.
• This is more difficult as their meaning is defined by their context

i.e. a noun phrase.
• We can represent this in Prolog as a property with a variable

entity. For example, the intransitive verb ‘paints’ needs an NP as
its actor: “Somebody paints” = paints(Somebody).

• We now need to ensure that this variable ‘Somebody’ is matched
with the NP that precedes the VP.

• To do this we need to make the argument of the Prolog term
(‘Somebody’) visible from outside of the term.

• We do this by adding another argument to the head of the rule.
e.g intrans_verb(Somebody,paints(Somebody)) --> [paints].

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 15

Adding meaning to a simple grammar (3)
• Now we need to ensure that this variable gets matched to the

NP at the sentence level.
• First the variable needs to be passed to the parent VP:

verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).

• The Actor variable must then be linked to the NP at the
sentence level:
sentence(VP) --> noun_phrase(Actor), verb_phrase(Actor,VP).

• It now relates directly to the meaning derived from the NP.
• The logical structure of the VP is then passed back to the user

as an extra argument in sentence.
• If the grammar is more complex then the structure returned to

the user might be the product of more than just the VP. For
example, determiners might be used as existential quantifiers
(‘every’, ‘all’, ‘a’) to structure the output (see Bratko).

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 16

Adding meaning to a simple grammar (4)
• Lastly, we need to define the transitive verb.
• This needs two arguments, a Subject and an Object.

trans_verb(Subject,Object,likes(Subject,Object)) --> [likes].

• The Subject needs to be bound to the initial NP and the Object
to the NP that is part of the VP.

verb_phrase(Subject,VP) --> trans_verb(Subject,Object,VP),
noun_phrase(Object).

• This binds the Subject to the initial NP at the sentence level as it
appears in the right position the verb_phrase head.

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 17

A Grammar for Extracting Meaning.
• Now we have a grammar that can extract the meaning of a

sentence.
sentence(VP) --> noun_phrase(Actor), verb_phrase(Actor,VP).

noun_phrase(NP) --> proper_noun(NP).

verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).
verb_phrase(Actor,VP) --> trans_verb(Actor,Y,VP),

noun_phrase(Y).

intrans_verb(Actor, paints(Actor)) --> [paints].

trans_verb(X,Y, likes(X,Y)) --> [likes].

proper_noun(john) --> [john].
proper_noun(annie) --> [annie].

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 18

A Grammar for Extracting Meaning.
• The meaning of specific sentences can be extracted:
| ?- sentence(X,[john,likes,annie],[]).

X = likes(john,annie) ? ;
no

• Or, all possible meanings can be generated:
| ?- sentence(X,Y,[]).

X = paints(john),
Y = [john,paints] ? ;

X = likes(john,john),
Y = [john,likes,john] ? ;

X = likes(john,annie),
Y = [john,likes,annie] ? ;

X = paints(annie),
Y = [annie,paints] ? ;

X = likes(annie,john),
Y = [annie,likes,john] ? ;

X = likes(annie,annie),
Y = [annie,likes,annie] ? ;
no

01/11/04 AIPP Lecture 11: Parsing and Semantics in DCGs 19

Extending the meaning
• By writing grammars that accept

– conjunctions (e.g. ‘and’),
– relative clauses (e.g. ‘that snores’ in ‘The man that snores’),
– and conditionals (e.g. ‘I am blue if I am a dolphin’)

all forms of logical relationship in Prolog can be extracted from
strings of natural language.

Next few lectures…..
• I will show you how you can interface directly with the Prolog

interpreter using natural language;
• turn these strings into lists of terms,
• manipulate these terms,
• use them to perform computations, and
• create new strings as output.

