
28/10/04 AIPP Lecture 10: Definite Clause Grammars 1

Definite Clause Grammars

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 10
28/10/04

28/10/04 AIPP Lecture 10: Definite Clause Grammars 2

Contents
• Definite Clause Grammars
• Grammar Rules
• Terminals and non-terminals
• Grammar rules in Prolog
• How Prolog uses grammar rules
• A very simple English grammar
• Adding arguments and Prolog goals
• Explanation of Difference Lists

28/10/04 AIPP Lecture 10: Definite Clause Grammars 3

Definite Clause Grammars
• A grammar is a precise definition of which sequences of words

or symbols belong to some language.

• Grammars are particularly useful for natural language
processing: the computational processing of human
languages, like English.

• But they can be used to process any precisely defined
'language', such as the commands allowed in some human-
computer interface.

• Prolog provides a notational extension called DCG (definite
Clause Grammar) that allows the direct implementation of
formal grammars.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 4

Grammar rules
• In general, a grammar is defined as a collection of grammar

rules. These are sometimes called rewrite rules, since they
show how we can rewrite one thing as something else.

• In linguistics, a typical grammar rule for English might look like
this:

sentence � noun_phrase, verb_phrase
e.g “ The man ran.”

• This would show that, in English, a sentence could be
constructed as a noun phrase, followed by a verb phrase.

• Other rules would then define how a noun phrase, and a verb
phrase, might be constructed. For example:

noun_phrase � noun
noun_phrase � determiner, noun
verb_phrase � intransitive_verb
verb_phrase � transitive_verb, noun_phrase

28/10/04 AIPP Lecture 10: Definite Clause Grammars 5

Terminals and non-terminals
• In these rules, symbols like sentence, noun, verb, etc., are

used to show the structure of the language, but they don't go
as far down as individual ‘words’ in the language.

• Such symbols are called non-terminal symbols, because we
can't stop there.

• In defining grammar rules for noun, though, we can say:
noun � [ball]
noun � [dog]
noun � [stick]
noun � [‘Edinburgh’]

• Here, ‘ball’, ‘dog’, ‘stick’ and ‘Edinburgh’ are words in the
language itself.

• These are called the terminal symbols, because we can't go
any further. They can't be expanded any more.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 6

Grammar rules in Prolog
• Prolog allows us to directly implement grammars of this form.
• In place of the � arrow, we have a special operator: -->.
• So, we can write the same rules as:

sentence --> noun_phrase, verb_phrase.
noun_phrase --> noun.
noun_phrase --> determiner, noun.
verb_phrase --> intransitive_verb.
verb_phrase --> transitive_verb, noun_phrase.

• Here, each non-terminal symbol is like a predicate with no
arguments.

• Terminal symbols are represented as lists containing one atom
noun --> [ball].
noun --> [dog].
noun --> [stick].
noun --> ['Edinburgh'].

Proper nouns must be written
as strings otherwise they are

interpreted as variables.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 7

How Prolog uses grammar rules
• Prolog converts DCG rules into an internal representation

which makes them conventional Prolog clauses.
– This can be seen by ‘listing’ the consulted code.

• Non-terminals are given two extra arguments, so:
sentence --> noun_phrase, verb_phrase.

becomes: sentence(In, Out) :-
noun_phrase(In, Temp),
verb_phrase(Temp, Out).

• This means: some sequence of symbols In, can be recognised
as a sentence, leaving Out as a remainder, if
– a noun phrase can be found at the start of In, leaving Temp as a

remainder,
– and a verb phrase can be found at the start of Temp, leaving Out

as a remainder.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 8

How Prolog uses grammar rules (2)
• Terminal symbols are represented using the special predicate

'C', which has three arguments. So:
noun --> [ball].

becomes: noun(In, Out) :-
'C'(In, ball, Out).

• This means: some sequence of symbols In can be recognised
as a noun, leaving Out as a remainder, if the atom ball can be
found at the start of that sequence, leaving Out as a remainder.

• The built-in predicate 'C' is very simply defined:
'C'([Term|List], Term, List).

where it succeeds if its second argument is the head of its first
argument, and the third argument is the remainder.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 9

A very simple grammar
• Here's a very simple little grammar, which defines a very small

subset of English:
sentence --> noun, verb_phrase.
verb_phrase --> verb, noun.
noun --> [bob].
noun --> [david].
noun --> [annie].
verb --> [likes].
verb --> [hates].
verb --> [runs].

• We can now use the grammar to test whether some sequence
of symbols belongs to the language:
| ?- sentence([bob, likes, annie], []).
yes
| ?- sentence([bob, runs], []).
no

Need to write an extra
rule for intransitive verbs.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 10

A very simple grammar (2)
• By specifying that the remainder is an empty list we can use

the grammar to generate all of the possible sentences in the
language:

| ?- sentence(X, []).
X = [bob,likes,bob] ? ;
X = [bob,likes,david] ? ;
X = [bob,likes,annie] ? ;
X = [bob,hates,bob] ? ;
X = [bob,hates,david] ? ;
:

• It would be much more useful if we could do something with
the sequence of symbols, such as converting it into some
internal form for processing, or translating it into another
language.

• We can do this very powerfully with DCGs, by building a
parser, rather than a recogniser. (next lecture)

This is a recogniser. It will tell
us whether some sequence of
symbols is in a language or not.
This has limited usefulness.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 11

Adding Arguments
• We can add our own arguments to the non-terminals in DCG

rules, for whatever reasons we choose.
• As an example, we can very simply add number agreement

(singular or plural) between the subject of an English sentence
and the main verb.

sentence --> noun(Num), verb_phrase(Num).
verb_phrase(Num) --> verb(Num), noun(_).
noun(singular) --> [bob].
noun(plural) --> [students].
verb(singular) --> [likes].
verb(plural) --> [like].

• So now:
| ?- sentence([bob, likes, students], []).
yes
| ?- sentence([students, likes, bob], []).
no

28/10/04 AIPP Lecture 10: Definite Clause Grammars 12

Adding Prolog goals
• If we need to, we can add Prolog goals to any DCG rule.
• They need to be put inside { } brackets, so that Prolog knows

they're to be processed as Prolog, and not as part of the DCG
itself.

• Let's say that within some grammar, we wanted to be able to
say that some symbol had to be an integer between 1 and 100
inclusive. We could write a separate rule for each number:

num1to100 --> [1].
num1to100 --> [2].
num1to100 --> [3].
num1to100 --> [4].
...
num1to100 --> [100].

• But using a Prolog goal, there's a much easier way:
num1to100 --> [X], {integer(X), X >= 1, X =< 100}.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 13

Difference Lists
• We call our grammar with a list of terminal symbols and an

empty list as we are checking that the first list conforms to the
grammar with nothing left over.
– sentence([the,man,ran],[]).

• We do this as the Prolog interpreter uses difference lists to
convert the DCG rules into conventional code.

• The difference list representation is a way of expressing how
two lists intersect.

• Any list can be represented as the difference between two lists:
[the,little,blue,man] can be represented as the difference between:

[the,little,blue,man]-[]
[the,little,blue,man,who,swam]-[who,swam]
[the,little,blue,man,called,bob]-[called,bob]

28/10/04 AIPP Lecture 10: Definite Clause Grammars 14

Difference Lists (2)
• The Prolog interpreter converts

sentence --> noun_phrase, verb_phrase.
• into conventional Prolog code using difference lists that can be

read as: The difference of lists In and Out is a sentence if
the difference between In and Temp is a noun phrase and
the difference between Temp and Out is a verb phrase.

[the,man] [ran] [and,ran]

NP VP

Out
Temp

In
sentence([the,man,ran,and,ran],[and,ran]):-

noun_phrase([the,man],[ran,and,ran]),
verb_phrase([ran],[and,ran]).

28/10/04 AIPP Lecture 10: Definite Clause Grammars 15

Diff. Lists: An Efficient Append
append([],L2,L2).
append([H|T],L2,[H|Out]):-

append(T,L2,Out).

• append/2 is a highly inefficient way of combining two lists.
?- append([a,b,c],[d],X).

append([b,c],[d],X1) where X1 = [a|X2]
append([c],[d],X2) where X2 = [b|X3]
append([],[d],X3) where X3 = [c|X4]
true. where X4 = [d]

• It must first recurse through the whole of the first list before
adding its elements to the front of the second list.

• As the first list increases in length as does the number of
recursions needed.

• If we represent the lists as difference lists we can append the
second list directly to the end of the first list.

28/10/04 AIPP Lecture 10: Definite Clause Grammars 16

Diff. Lists: An Efficient Append (2)
• We can represent any list as the difference between two lists:

[a,b,c] can be represented as
[a,b,c]-[] or [a,b,c,d,e]-[d,e] or [a,b,c|T]-T

Where ‘T’ can be any list of symbols.
• As the second member of the pair refers to the end of the list it

can be directly accessed.
• This allows us to define a version of append that just uses

unification to append two lists L1 and L2 to make L3.
append(A1-Z1, Z1-Z2, A1-Z2).

• When L1 is represented by A1-Z1, and L2 by A2-Z2
the result L3 is A1-Z2 if Z1=A2.

L1 L2

A1 A2

L3

Z1 Z2

28/10/04 AIPP Lecture 10: Definite Clause Grammars 17

Diff. Lists: An Efficient Append (3)
• If we replace our usual append definition by this one line we can

append without recursion.
append(A1-Z1, Z1-Z2, A1-Z2).

?- append([a,b,c|Z1]-Z1, [d,e|Z2]-Z2, L).
L = [a,b,c,d,e|Z2]-Z2,
Z1 = [d,e|Z2] ?

• A clean append can then be achieved by specifying that Z2 is an
empty list.
| ?- append([a,b,c|Z1]-Z1, [d,e]-[], A1-[]).
1 Call: append([a,b,c|_506]-_506,[d,e]-[],_608-[]) ?
1 Exit: append([a,b,c,d,e]-[d,e],[d,e][],[a,b,c,d,e]-[]) ?

A1 = [a,b,c,d,e],
Z1 = [d,e] ?
yes

