
21/10/04 AIPP Lecture 9: Informed Search Strategies 1

Informed Search Strategies

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 9
21/10/04

21/10/04 AIPP Lecture 9: Informed Search Strategies 2

Blind Search
• Depth-first search and breadth-first search are examples of

blind (or uninformed) search strategies.
• Breadth-first search produces an optimal solution (eventually,

and if one exists), but it still searches blindly through the state-
space.

• Neither uses any knowledge about the specific domain in
question to search through the state-space in a more directed
manner.

• If the search space is big, blind search can simply take too long
to be practical, or can significantly limit how deep we're able to
look into the space.

21/10/04 AIPP Lecture 9: Informed Search Strategies 3

Informed Search
• A search strategy which searches the most promising

branches of the state-space first can:
– find a solution more quickly,
– find solutions even when there is limited time available,
– often find a better solution, since more profitable parts of

the state-space can be examined, while ignoring the
unprofitable parts.

• A search strategy which is better than another at identifying the
most promising branches of a search-space is said to be more
informed.

21/10/04 AIPP Lecture 9: Informed Search Strategies 4

Best-first search
• To implement an informed search strategy, we need to slightly

modify the skeleton for agenda-based search that we've
already seen.

• Again, the crucial part of the skeleton is where we update the
agenda.

• Rather than simply adding the new agenda items to the
beginning (depth-first) or end (breadth-first) of the existing
agenda, we add them to the existing agenda in order according
to some measure of how promising we think a state is, with the
most promising ones first. This gives us best-first search.
update_agenda(OldAgenda, NewStates, NewAgenda) :-

append(NewStates, OldAgenda, NewAgenda).
sort_agenda(NewStates, OldAgenda, NewAgenda).

21/10/04 AIPP Lecture 9: Informed Search Strategies 5

Best-first search (2)
sort_agenda([], NewAgenda, NewAgenda).
sort_agenda([State|NewStates], OldAgenda, SortedAgenda):-

insert(State, OldAgenda, NewAgenda),
sort_agenda(NewStates, NewAgenda, SortedAgenda).

insert(New, [], [New]).
insert(New, [Old|Agenda], [New,Old|Agenda]):-

h(New,H), h(Old,H2), H =< H2.
insert(New, [Old|Agenda], [Old|Rest]):-

insert(New, Agenda, Rest).

• This is a very general skeleton. By implementing
sort_agenda/3, according to whatever domain we're looking at,
we can make the search strategy informed by our knowledge of
the domain.

• Best-first search isn't so much a search strategy, as a mechanism
for implementing many different types of informed search.

� Compares heuristic
evaluation for
each state.

21/10/04 AIPP Lecture 9: Informed Search Strategies 6

Uniform-cost search
• One simple way to sort the agenda is by the cost-so-far. This

might be the number of moves we've made so far in a game, or
the distance we've travelled so far looking for a route between
towns.

• If we sort the agenda so that the states with the lowest costs
come first, then we'll always expand these first, and that means
that we're sure we'll always find an optimal solution first.

• This is uniform-cost search. It looks a lot like breadth-first
search, except that it will find an optimal solution even if the
steps between states have different costs (e.g. the distance
between towns is irregular).

• However, uniform-cost search doesn't really direct us towards
the goal we're looking for, so it isn't very informed.

21/10/04 AIPP Lecture 9: Informed Search Strategies 7

Greedy Search
• Alternatively, we might sort the agenda by the cost of getting to

the goal from that state. This is known as greedy search.
• An obvious problem with greedy search is that it doesn't take

account of the cost so far, so it isn't optimal, and can wander
into dead-ends, like depth-first search.

• In most domains, we also don't know the cost of getting to the
goal from a state. So we have to guess, using a heuristic
evaluation function.
– If we knew how far we were from the goal state we wouldn’t

need to search for it!

0
Co

st
 M

ax
Initial State Goal

local minimum = looping

21/10/04 AIPP Lecture 9: Informed Search Strategies 8

Heuristic evaluation functions
• A heuristic evaluation function, h(n), is the estimated cost of

the cheapest path from the state at node n, to a goal state.
• Heuristic evaluation functions are very much dependent on the

domain used. h(n) might be the estimated number of moves
needed to complete a puzzle, or the estimated straight-line
distance to some town in a route finder.

• Choosing an appropriate function greatly affects the
effectiveness of the state-space search, since it tells us which
parts of the state-space to search next.

• A heuristic evaluation function which accurately represents the
actual cost of getting to a goal state, tells us very clearly which
nodes in the state-space to expand next, and leads us quickly
to the goal state.

21/10/04 AIPP Lecture 9: Informed Search Strategies 9

F

Example Heuristics
Straight-line distance
• The distance between two

locations on a map can be
known without knowing how
they are linked by roads (i.e.
the absolute path to the
goal).

Manhattan Distance
• The smallest number of

vertical and horizontal
moves needed to get to the
goal (ignoring obstacles).

A

B

C

E D

D
E C

B
A

Search
Tree

Problem
Space

A B C
S E
G H

Manhattan
Distance
A = 4
E = 2X

S

H
G

E
B
C

A

F
X

=3
=4
=3
=2
=1

2=
1=
2=

21/10/04 AIPP Lecture 9: Informed Search Strategies 10

Combining cost-so-far and heuristic function
• We can combine the strengths of uniform-cost search and

greedy search.
• Since what we're really looking for is the optimal path between

the initial state, and some goal state, a better measure of how
promising a state is, is the sum of the cost-so-far, and our best
estimate of the cost from there to the nearest goal state.

• For a state n, with a cost-so-far g(n), and a heuristic estimate
of the cost to goal of h(n), what we want is:

f(n) = g(n) + h(n)

• This proves to be a very effective strategy for controlling state-
space search. When used with best-first search, as a way of
sorting the agenda---where the agenda is sorted so that the
states with the lowest values of f(n) come first, and are
therefore expanded first---this is known as Algorithm A.

21/10/04 AIPP Lecture 9: Informed Search Strategies 11

A* search and admissibility
• The choice of an appropriate heuristic evaluation function,

h(n), is still crucial to the behaviour of this algorithm.
• In general, we want to choose a heuristic evaluation function

h(n) which is as close as possible to the actual cost of getting
to a goal state.

• If we can choose a function h(n) which never overestimates
the actual cost of getting to the goal state, then we have a very
useful property. Such a h(n) is said to be admissible.

• Best-first search, where the agenda is sorted according to the
function f(n) = g(n) + h(n) and where the function h(n)
is admissible, can be proven to always find an optimal solution.
This is known as Algorithm A*.

21/10/04 AIPP Lecture 9: Informed Search Strategies 12

BFS and Admissibility
• Perhaps surprisingly, breadth-first search (where each step

has the same cost) is an example of Algorithm A*, since the
function it uses to sort the agenda is simply:

f(n) = g(n) + 0

• Breadth-first search takes no account of the distance to the
goal, and because a zero estimate cannot possibly be an
overestimate of that distance it has to be admissible. This
means that BFS can be seen as a basic example of Algorithm
A*.

• However, despite being admissible breadth-first search isn't a
very intelligent search strategy as it doesn't direct the search
towards the goal state. The search is still blind.

21/10/04 AIPP Lecture 9: Informed Search Strategies 13

Informedness
• We say that a search strategy which searches less of the state-

space in order to find a goal state is more informed. Ideally,
we'd like a search strategy which is both admissible (so it will
find us an optimal path to the goal state), and informed (so it
will find the optimal path quickly.)

• Admissibility requires that the heuristic evaluation function,
h(n) doesn't overestimate, but we do want a function which is
as close as possible to the actual cost of getting to the goal.

• Formally, for two admissible heuristics h1 and h2, if h1(n) <=
h2(n) for all states n in the state-space, then heuristic h2 is
said to be more informed than h1.

21/10/04 AIPP Lecture 9: Informed Search Strategies 14

Example: the 8-puzzle
• http://www.permadi.com/java/puzzle8/

• This is a classic Toy Problem (a
simple problem used to
compare different problem
solving techniques).

• The puzzle starts with 8 sliding-
tiles out of place and one gap
into which the tiles can be slid.
The goal is to have all of the
numbers in order.

• What would be a good,
admissible, informed heuristic
evaluation function for this
domain?

G
O
AL

G
O
AL

G
O
AL

G
O
AL

ST
AR

T
ST

AR
T

ST
AR

T
ST

AR
T

21/10/04 AIPP Lecture 9: Informed Search Strategies 15

8-puzzle: heuristics
• We could use the number of tiles out of place as our heuristic

evaluation function. That would give h1(n) = 6 for this
puzzle state.

• We could also use the sum of the distances of the tiles from
their goal positions i.e. the Manhattan distance. This would
give h2(n) = 8.

• In fact, it can easily be shown that h2 is both admissible and
more informed than h1.
– It cannot overestimate, since the number of moves we

need to make to get to the goal state must be at least the
sum of the distances of the tiles from their goal positions.

– It always gives a value at least as high as h1, since if a tile
is out of position, by definition it is at least one square away
from its goal position, and often more.

21/10/04 AIPP Lecture 9: Informed Search Strategies 16

Comparing Search Costs
• If we compare the search costs for different search strategies

used to solve the 8-puzzle.
• We can calculate search costs as the number of nodes in the

state-space looked at to reach a solution.

• h2 dominates h1 = for any node, n, h2(n) >= h1(n).
• It is always better to use a heuristic function with higher values,

as long as it does not overestimate (i.e. it is admissible).

113539347394114

66102
12131124
18206806

227
93
39

A* (h1)
= Num. tiles out.

7336440412
394712710
2563848

A* (h2)
= Manhat. Dist.

Iterative Deepening
Search

Solution
at depth

21/10/04 AIPP Lecture 9: Informed Search Strategies 17

Summary
• Blind search: Depth-First, Breadth-First, IDS

– Do not use knowledge of problem space to find solution.
• Informed search
• Best-first search: Order agenda based on some measure of how

‘good’ each state is.
• Uniform-cost: Cost of getting to current state from initial state = g(n)
• Greedy search: Estimated cost of reaching goal from current state

– Heuristic evaluation functions, h(n)
• A* search: f(n) = g(n) + h(n)
• Admissibility: h(n)never overestimates the actual cost of getting to

the goal state.
• Informedness: A search strategy which searches less of the state-

space in order to find a goal state is more informed.

21/10/04 AIPP Lecture 9: Informed Search Strategies 18

Missionaries and Cannibals
• http://www.plastelina.net/examples/games/game2.html
• Next weeks practical exercise: complete a agenda-based search program to

solve the Missionaries and Cannibals problem.

