-RULUG

11/10/04

Combining Lists &
Built-in Predicates

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 6
11/10/04

AIPP Lecture 6: Built-in Predicates

Collecting Results

« Last time we discussed three methods of collecting
results:

1. Compute result at base case first, then use this result as
you backtrack through the program.

2. Accumulate a result as you recurse into the program and

finalise it at the base case.

3. Recurse on an uninstantiated variable and accumulate
results on backtracking.

ULUG

 Today we will look how you can use an accumulator
during recursion and backtracking to combine lists.

| ?- Ll=[a,b], L2=[c,d], Z=[L1|L2].
1 Ll = [a,b], L2 = [c,d], Z2 = [[a,b]l,c,d] ?

)
Rl

I 11/10/04 AIPP Lecture 6: Built-in Predicates 2

(‘I] Constructing a list during Recursion

D —
2= pred(la,b], [c,d],0ut). Desired behaviour

(Oout = [a,b,c,d].
_J\ To add L1 to L2 during recursion we can use the bar

I notation to decompose L1 and add the Head to L2.

pred([H|T],L2,0ut) : -
pred (T, [H|L2],0ut) .

(t Accumulator
« We need to have an extra variable (Out) which can be

used to pass back the new list once L1 is empty.

r (_‘ pred([],L2,L2). € base case: when L1 is empty make
| the new list equal to the Output list.

r] « The base case must go before the recursive case.

I 11/10/04 AIPP Lecture 6: Built-in Predicates 3

["| Constructing a list during Recursion (2)

U Always the
| ?- pred([a,b]l, [c,d],Out). | same variable
1 1 Call: pred([a,b], [c,d], 515) 7
' , 2 2 Call: pred([b],[a,c,d], 515) 7
3 3 Call: pred([], [b,a,c,d], 515) ?
3 3 Exit: pred([], [b,a,c,d], [b,a,c,d]) 7
I 2 2 Exit: pred([b], [a,c,d], [b,a,c,d]) ?
1 1l Exit: pred([a,b], [c,d], [b,a,c,d]) 2
Out = [b,a,c,d] ?
(’ ves

If you construct a list through
pred(l],Lz,L2) . recursion (on the way down)
pred ([H|T],LZ,0ut) : - and then pass the answer
pred (T, [H|L2],0ut) . back the elements will be in
reverse order.

)
!

/ 11/10/04 AIPP Lecture 6: Built-in Predicates 4

reverse([],L2,L2).
reverse ([H|T],L2,0ut) : -

I

DA D

reverse (T, [H|L2] ,0ut) .

reverse/3

3
| ?- pred([a,b], [c,d],Out).
(d 1 1 Call: pred([a,b], [c,d], 515) 7
2 2 Call: pred([b],[a,c,d], 515) 7
3 3 Call: pred([], [b,a,c,d], 515) ?
3 3 Exit: pred([], [b,a,c,d], [b,a,c,d]) 7
| 2 2 Exit: pred([b], [a,c,d], [b,a,c,d]) ?
1 1 Exit: pred([a,b], [c,d], [b,a,c,d]) ?
Out = [b,a,c,d] ?
(' ves

If you construct a list through
recursion (on the way down)
and then pass the answer
back the elements will be in
reverse order.

/ 11/10/04 AIPP Lecture 6: Built-in Predicates 5

Constructing a list in backtracking

To maintain the order of list elements we need to
construct the list on the way out of the program, i.e.
through backtracking.

 Use the same bar deconstruction as before but add the
head element of L1 to Out in the Head of the clause.

OG

2

pred([H|T],L2, [H|Out]) :- < Head is not added
pred (T,L2,0ut) . until backtracking.

Now when we reach the base case we make L2 the

foundation for the new Out list and add our L1 elements
to it during backtracking.

!

D)

pred([],L2,L2). € base case: when L1 is empty make
the new list equal to the Output list.

I 11/10/04 AIPP Lecture 6: Built-in Predicates 6

append/3

| ?- pred2([a,b], [c,d],Out).

Variable changes
at every Call.

1,

4

Exit: pred?2
Exit: pred2
Out = [a,b,c,d] ?

ves

c,dl, [b,c,d]) 7
y Llc,d], [a,b,c,d]) 7

1 1 Call: pred2([a,b], [c,d], 515) 7
2 2 Call: pred2(],[c,], ~1131) 7
3 3 Call: pred2([], [c,d], 1702) 7

3 3 Exit: pred?2 ([c,d], [c,d]) 7

2 2 ([c

1 1 (b]

[
[]
[]
e
[a

ULUG

append([],L2,L2).
append ([H|T] ,L2, [H|Rest]) : -
append (T,L2,Rest) .

1

* append/3 is another very common user-defined list
] processing predicate.

DA D

| 11/10/04 AIPP Lecture 6: Built-in Predicates 7

ULUG

)
!

|

Computing in reverse

« Both reverse/3 and append/ 3 can be used

backwards to make two lists out of one.

« This can be a useful way to strip lists apart and check

their contents.

| ?- append(X,Y, [a,b,c,d]).

x = U,y =la,b,c,dl 27 append ([],L2,L2).

x = lal, ¥ =1[b,c,dl 27 sppend([H|T],L2, [H|Rest]) : -
X = [a,b], Y = [c,d] ? ; append (T,L2,Rest) .

X = [la,b,c], Y = [d] ? ;

X = la,b,c,d], Y =[] 2 ;

no

|?_append(xl [Cr d] ’ [arbr Cy d]) .
X = [a,b] ?

yes

11/10/04 AIPP Lecture 6: Built-in Predicates 8

@ Computing in reverse

« Both reverse/3 and append/ 3 can be used

(backwards to make two lists out of one.
« This can be a useful way to strip lists apart and check
their contents.

‘ | ?- reverse(X,Y
=[], ¥ = [a
[
Y

b,c,d] 2 ; reverse([],L2,L2).

X
X =1 = ’
X = [b,al, Y [c,d] ? ; reverse([H|T],L2,0ut):-
X = [c,b,al, = [d] ? ; reverse (T, [H|L2],0ut).
X = [d,c,b,al, Y [
LY

-reverse([d,c,b,al,Y, [a,b,c,d]).
= [] 7

?
yes

I 11/10/04 AIPP Lecture 6: Built-in Predicates 9

Built-in Predicates
var/1 I

nonvar/1
atom/1
atomic/1
number/1 > Identifying terms
integer/1
float/1
compound/1
ground/1 J
=../2
functor/3 — Decomposing structures
arg/3 _<
findall/3
setof/3 ~ Collecting all solutions
] bagof/3

e

a

)
R

I 11/10/04 AIPP Lecture 6: Built-in Predicates 10

@ Identifying Terms

« These built-in predicates allow the type of terms to be

() tested.
var (X) succeeds if X is currently an uninstantiated variable.

nonvar (X) succeeds if X is not a variable, or already instantiated
| atom (X) is true if X currently stands for an atom

number (X) is true if X currently stands for a number
(‘ integer (X) is true if X currently stands for an integer
) float (X) is true if X currently stands for a real number.
atomic (X) is true if X currently stands for a number or an atom.

» compound (X) is true if X currently stands for a structure.
r (_I ground (X) succeeds if X does not contain any uninstantiated

variables.

/ 11/10/04 AIPP Lecture 6: Built-in Predicates 11

UL UG

!

DA D

var/1, nonvar/1, atom/1

var (X) succeeds if X is currently an uninstantiated variable.

| ?- var (X). | ?- X =5, wvar (X). | ?—- var ([X]) .
true ? no no
yes

nonvar (X) Conversely, nonvar/1 succeeds if X is not a
variable, or already instantiated.

| ?- nonvar(X). | ?- X = 5,nonvar (X). | ?-nonvar ([X]) .
no X =507 true °?

yes yes
atom (X) is true if X currently stands for an atom: a non-

variable term with 0 arguments, and not a number

| ?- atom(paul). | ?- X = paul,atom(X). | ?- atom([]) .
yes X = paul °? yes
| ?-atom([a,bl]).
no

11/10/04 AIPP Lecture 6: Built-in Predicates 12

UL UG

!

]

number/1, integer/1, float/1

number (X) is true if X currently stands for any number

| ?- number (X) . | ?—- X=5,number (X) . | ?- number(5.40).
no X =57 yes

yes

To identify what type of number it is use:

integer (X) istrue if X currently stands for an integer (a whole
positive or negative number or zero).

float (X) is true if X currently stands for a real number.
| ?- integer (5). | ?- integer (5.46).

yes no

| ?2— float (5). | ?— float(5.406).

no yes

11/10/04 AIPP Lecture 6: Built-in Predicates 13

I

(s

2

)
!

atomic/1, compound/1, ground/1

If atom/1 is too specific then you can use atomic/1 which
accepts numbers and atoms.
| 22— atom(5). | ?2— atomic (5).

no yes

If atomic/1 fails then the term is either an uninstantiated
variable (which you can test with var /1) or a compound term:

| ?—compound ([]) . |?-compound([a]). |?-compound (b(a)).

no yes yes

ground (X) succeeds if X does not contain any uninstantiated
variables. Also checks inside compound terms.

| ?—=ground (X) . | ?—=ground (a (b, X)) .
no no
| ?—ground (a) . | ?=ground ([a,b,c]) .
ves ves

11/10/04 AIPP Lecture 6: Built-in Predicates 14

UL UG

!

DA D

Decomposing Structures

* When using compound structures you can’t use a variable
to check or make a functor.

| ?7— X=tree, Y = X(maple).
Syntax error Y=X<<here>> (maple)

functor (T, F,N) is true if F is the principal functor of T and
N is the arity of F.

arg (N, Term,6A) is true if A is the Nth argument in Term.

| ?-functor(t (£ (X),a,T),Func,N). |?-arg(2,t(t(X),[]),A).

N = 3, Func = t ? A= 1] 2

YES yes

| ?- functor (D,date,3), arg(l,D,11), arg(2,D,oct),
arg(3,D,2004) .

D = date(1l1l,o0ct,2004) ? yes

11/10/04 AIPP Lecture 6: Built-in Predicates 15

ULUG

)
!

Decomposing Structures (2)

We can also decompose a structure into a list of its
components using =../2.

Term =.. L is true if L is a list that contains the principal
functor of Term, followed by its arguments.

| ?2- f(a,b) =.. L. |?- T =.. [is blue,sam, today].

L = [f,a,b] ? T = is blue(sam,today) ?

yes yes

By representing the components of a structure as a list they can
be recursively processed without knowing the functor name.

| ?- £(2,3)=..[F,N|Y], N1 is N*3, L=..[F,N1]|Y].
L = £(6,3)°7

ves

11/10/04 AIPP Lecture 6: Built-in Predicates 16

Collecting all solutions

* You've seen how to generate all of the solutions to a given
goal, at the SICStus prompt (;):

| ?-— member (X, [1,2,3,4]).
=1

?
?
?
?

2
= 3
4

It would be nice if we could generate all of the solutions to
some goal within a program.

ULUG

rr—‘ « There are three similar built-in predicates for doing this:
. findall/3

setof/3
r"] bagof/3

/ 11/10/04 AIPP Lecture 6: Built-in Predicates 17

(:D Meta-predicates

e findall/3, setof/3, andbagof/3 are all

() meta-predicates

— they manipulate Prolog’s proof strategy.

I findall (X,P,L)
setof (X,P,L) All produce a list L of all the objects X such

(F\] bagof (X,P,L) that goal P is satisfied (e.g. age (X, Age)).

* They all repeatedly call the goal P, instantiating the variable X
\ within P and adding it to the list L.
r (_‘ They succeed when there are no more solutions.

Exactly simulate the repeated use of ‘;’ at the SICStus prompt

to find all of the solutions.

I 11/10/04 AIPP Lecture 6: Built-in Predicates 18

findall/3

« findall/3 is the most straightforward of the three, and
the most commonly used:

| ?—- findall (X, member (X, [1,2,3,4]), Results).
Results = [1,2,3,4]

yes

 This reads: find all of the Xs, such that X is a member of
thelist [1, 2, 3, 4] and put the list of results in Results'.

UL UG

 Solutions are listed in the result in the same order in which
Prolog finds them.

If there are duplicated solutions, all are included. If there

are infinitely-many solutions, it will never terminate!

)
!

I 11/10/04 AIPP Lecture 6: Built-in Predicates 19

findall/3 (2)

« We can use findall/3 in more sophisticated ways.

 The second argument, which is the goal, might be a
compound goal:

| ?- findall (X, (member (X, [1,2,3,4]), X > 2), Results).
Results = [3,4]°?

yes

* The first argument can be a term of any complexity:

ULUG

| ?— findall (X/Y, (member (X, [1,2,3,4]), Y is X * X),
Results) .
Results = [1/1, 2/4, 3/9, 4/16]°?

yes

I

DA D

11/10/04 AIPP Lecture 6: Built-in Predicates 20

setof/3

« setof/3 works very much like findall/3, except that:

— It produces the sef of all results, with any duplicates removed,
and the results sorted.

— If any variables are used in the goal, which do not appear in
the first argument, setof /3 will return a separate result for

each possible instantiation of that variable:

| 7-setof (Child, age(Child,Age),Results).

ULUG

Age = b,
age (peter, 7). Results = [ann,tom] ? ;
age (ann, 5). Age = 7,
\ age (pat, 8). R 1 _ 5 .
{" r—d age (tom, 5) . esults [peter] ? ;
age (ann, 5). Age = 8,
| — .
Knowledge base Results = [pat] ? ;

| 11/10/04 AIPP Lecture 6: Built-in Predicates 21

ULUG

)
!

setof/3 (2)

We can use a nested call to setof /3 to collect together the
individual results:

?- setof (Age/Children, setof(Child,age(Child,Age),
Children), AllResults).
AllResults = [5/[ann,tom], 7/ [peter],8/[pat]] ?

yes

If we don't care about a variable that doesn't appear in the first
argument, we use the following form:

?- setof (Child, Age”age (Child,Age), Results).
Results = [ann,pat,peter,tom] ? ;

no

This reads: Find the set of all children, such that the cChild has
an Age (whatever it might be), and put the results in Results.’

11/10/04 AIPP Lecture 6: Built-in Predicates 22

ULUG

)
Rl

bagof/3

« bagof/3is very much like setof/3 except:

— that the list of results might contain duplicates,
— and isn’t sorted.

| ?- bagof(Child, age(Child,Age),Results).

Age = 5, Results = [tom,ann,ann] ? ;
Age = 7, Results = [peter] ? ;

Age = 8, Results = [pat] ? ;

no

« bagof/3is differentto findall/3 as it will generate

separate results for all the variables in the goal that do not
appear in the first argument.

| ?- findall (Child, age(Child,Age),Results).
Results = [peter,pat,tom,ann,ann] ? ;

no

11/10/04 AIPP Lecture 6: Built-in Predicates 23

L) Summary
« Showed two techniques for combining lists:
— Use an accumulator to build up result during recursion:
‘ ' reverse/3
— Build result in the head of the clause during backtracking:
append/3

« Built-in predicates
— ldentifying Terms
e var/1l, nonvar/l, atom/l, atomic/1,
« number/1, integer/1l, float/1,
« compound/1l, ground/1
— Decomposing Structures
e =../2, functor/3, arg/3
— Collecting all solutions
r] - findall/3, setof/3, bagof/3

- U

/ 11/10/04 AIPP Lecture 6: Built-in Predicates 24

