
11/10/04 AIPP Lecture 6: Built-in Predicates 1

Combining Lists &
Built-in Predicates

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 6
11/10/04

11/10/04 AIPP Lecture 6: Built-in Predicates 2

Collecting Results
• Last time we discussed three methods of collecting

results:
1. Compute result at base case first, then use this result as

you backtrack through the program.
2. Accumulate a result as you recurse into the program and

finalise it at the base case.
3. Recurse on an uninstantiated variable and accumulate

results on backtracking.

• Today we will look how you can use an accumulator
during recursion and backtracking to combine lists.
| ?- L1=[a,b], L2=[c,d], Z=[L1|L2].
L1 = [a,b], L2 = [c,d], Z = [[a,b],c,d] ?

11/10/04 AIPP Lecture 6: Built-in Predicates 3

|?- pred([a,b],[c,d],Out).
Out = [a,b,c,d].

• To add L1 to L2 during recursion we can use the bar
notation to decompose L1 and add the Head to L2.
pred([H|T],L2,Out):-

pred(T,[H|L2],Out).

• We need to have an extra variable (Out) which can be
used to pass back the new list once L1 is empty.
pred([],L2,L2). � base case: when L1 is empty make

the new list equal to the Output list.
• The base case must go before the recursive case.

Desired behaviour

Constructing a list during Recursion

Accumulator

11/10/04 AIPP Lecture 6: Built-in Predicates 4

| ?- pred([a,b],[c,d],Out).
1 1 Call: pred([a,b],[c,d],_515) ?
2 2 Call: pred([b],[a,c,d],_515) ?
3 3 Call: pred([],[b,a,c,d],_515) ?
3 3 Exit: pred([],[b,a,c,d],[b,a,c,d]) ?
2 2 Exit: pred([b],[a,c,d],[b,a,c,d]) ?
1 1 Exit: pred([a,b],[c,d],[b,a,c,d]) ?
Out = [b,a,c,d] ?

yes

pred([],L2,L2).
pred([H|T],L2,Out):-

pred(T,[H|L2],Out).

If you construct a list through
recursion (on the way down)

and then pass the answer
back the elements will be in

reverse order.

Constructing a list during Recursion (2)
Always the

same variable

11/10/04 AIPP Lecture 6: Built-in Predicates 5

reverse/3
| ?- pred([a,b],[c,d],Out).

1 1 Call: pred([a,b],[c,d],_515) ?
2 2 Call: pred([b],[a,c,d],_515) ?
3 3 Call: pred([],[b,a,c,d],_515) ?
3 3 Exit: pred([],[b,a,c,d],[b,a,c,d]) ?
2 2 Exit: pred([b],[a,c,d],[b,a,c,d]) ?
1 1 Exit: pred([a,b],[c,d],[b,a,c,d]) ?
Out = [b,a,c,d] ?

yes

reverse([],L2,L2).
reverse([H|T],L2,Out):-

reverse(T,[H|L2],Out).

If you construct a list through
recursion (on the way down)

and then pass the answer
back the elements will be in

reverse order.

11/10/04 AIPP Lecture 6: Built-in Predicates 6

• To maintain the order of list elements we need to
construct the list on the way out of the program, i.e.
through backtracking.

• Use the same bar deconstruction as before but add the
head element of L1 to Out in the Head of the clause.
pred([H|T],L2,[H|Out]):- � Head is not added

pred(T,L2,Out). until backtracking.
• Now when we reach the base case we make L2 the

foundation for the new Out list and add our L1 elements
to it during backtracking.
pred([],L2,L2). � base case: when L1 is empty make

the new list equal to the Output list.

Constructing a list in backtracking

11/10/04 AIPP Lecture 6: Built-in Predicates 7

append/3
| ?- pred2([a,b],[c,d],Out).
1 1 Call: pred2([a,b],[c,d],_515) ?
2 2 Call: pred2([b],[c,d],_1131) ?
3 3 Call: pred2([],[c,d],_1702) ?
3 3 Exit: pred2([],[c,d],[c,d]) ?
2 2 Exit: pred2([b],[c,d],[b,c,d]) ?
1 1 Exit: pred2([a,b],[c,d],[a,b,c,d]) ?
Out = [a,b,c,d] ?

yes
append([],L2,L2).
append([H|T],L2,[H|Rest]):-

append(T,L2,Rest).

* append/3 is another very common user-defined list
processing predicate.

Variable changes
at every Call.

11/10/04 AIPP Lecture 6: Built-in Predicates 8

• Both reverse/3 and append/3 can be used
backwards to make two lists out of one.

• This can be a useful way to strip lists apart and check
their contents.

| ?- append(X,Y,[a,b,c,d]).
X = [], Y = [a,b,c,d] ? ;
X = [a], Y = [b,c,d] ? ;
X = [a,b], Y = [c,d] ? ;
X = [a,b,c], Y = [d] ? ;
X = [a,b,c,d], Y = [] ? ;
no

|?-append(X,[c,d],[a,b,c,d]).
X = [a,b] ?
yes

append([],L2,L2).
append([H|T],L2,[H|Rest]):-

append(T,L2,Rest).

Computing in reverse

11/10/04 AIPP Lecture 6: Built-in Predicates 9

reverse([],L2,L2).
reverse([H|T],L2,Out):-

reverse(T,[H|L2],Out).

Computing in reverse
• Both reverse/3 and append/3 can be used

backwards to make two lists out of one.
• This can be a useful way to strip lists apart and check

their contents.
| ?- reverse(X,Y,[a,b,c,d]).
X = [], Y = [a,b,c,d] ? ;
X = [a], Y = [b,c,d] ? ;
X = [b,a], Y = [c,d] ? ;
X = [c,b,a], Y = [d] ? ;
X = [d,c,b,a], Y = [] ? ;
loop

|?-reverse([d,c,b,a],Y,[a,b,c,d]).
Y = [] ?
yes

11/10/04 AIPP Lecture 6: Built-in Predicates 10

Built-in Predicates
var/1
nonvar/1
atom/1
atomic/1
number/1 Identifying terms
integer/1
float/1
compound/1
ground/1
=../2
functor/3 Decomposing structures
arg/3
findall/3
setof/3 Collecting all solutions
bagof/3

11/10/04 AIPP Lecture 6: Built-in Predicates 11

Identifying Terms
• These built-in predicates allow the type of terms to be

tested.
var(X) succeeds if X is currently an uninstantiated variable.
nonvar(X) succeeds if X is not a variable, or already instantiated
atom(X) is true if X currently stands for an atom
number(X) is true if X currently stands for a number
integer(X) is true if X currently stands for an integer
float(X) is true if X currently stands for a real number.
atomic(X) is true if X currently stands for a number or an atom.
compound(X)is true if X currently stands for a structure.
ground(X) succeeds if X does not contain any uninstantiated

variables.

11/10/04 AIPP Lecture 6: Built-in Predicates 12

var(X) succeeds if X is currently an uninstantiated variable.
| ?- var(X). | ?- X = 5, var(X). | ?- var([X]).
true ? no no
yes
nonvar(X) Conversely, nonvar/1 succeeds if X is not a

variable, or already instantiated.
| ?- nonvar(X). | ?- X = 5,nonvar(X). | ?-nonvar([X]).
no X = 5 ? true ?

yes yes

atom(X) is true if X currently stands for an atom: a non-
variable term with 0 arguments, and not a number

| ?- atom(paul). | ?- X = paul,atom(X). | ?- atom([]).
yes X = paul ? yes

| ?-atom([a,b]).
no

var/1, nonvar/1, atom/1

11/10/04 AIPP Lecture 6: Built-in Predicates 13

number(X) is true if X currently stands for any number
| ?- number(X). | ?- X=5,number(X). | ?- number(5.46).
no X = 5 ? yes

yes

To identify what type of number it is use:
integer(X) is true if X currently stands for an integer (a whole

positive or negative number or zero).
float(X) is true if X currently stands for a real number.

| ?- integer(5). | ?- integer(5.46).
yes no

| ?- float(5). | ?- float(5.46).
no yes

number/1, integer/1, float/1

11/10/04 AIPP Lecture 6: Built-in Predicates 14

atomic/1, compound/1, ground/1
• If atom/1 is too specific then you can use atomic/1 which

accepts numbers and atoms.
| ?- atom(5). | ?- atomic(5).
no yes

• If atomic/1 fails then the term is either an uninstantiated
variable (which you can test with var/1) or a compound term:
|?-compound([]). |?-compound([a]). |?-compound(b(a)).
no yes yes

• ground(X) succeeds if X does not contain any uninstantiated
variables. Also checks inside compound terms.

|?-ground(X). |?-ground(a(b,X)).
no no
|?-ground(a). |?-ground([a,b,c]).
yes yes

11/10/04 AIPP Lecture 6: Built-in Predicates 15

Decomposing Structures
• When using compound structures you can’t use a variable

to check or make a functor.
|?- X=tree, Y = X(maple).
Syntax error Y=X<<here>>(maple)

functor(T,F,N) is true if F is the principal functor of T and
N is the arity of F.

arg(N,Term,A) is true if A is the Nth argument in Term.
|?-functor(t(f(X),a,T),Func,N). |?-arg(2,t(t(X),[]),A).
N = 3, Func = t ? A = [] ?
yes yes

| ?- functor(D,date,3), arg(1,D,11), arg(2,D,oct),
arg(3,D,2004).

D = date(11,oct,2004) ? yes

11/10/04 AIPP Lecture 6: Built-in Predicates 16

Decomposing Structures (2)
• We can also decompose a structure into a list of its

components using =../2.
Term =.. L is true if L is a list that contains the principal

functor of Term, followed by its arguments.
| ?- f(a,b) =.. L. |?- T =.. [is_blue,sam,today].
L = [f,a,b] ? T = is_blue(sam,today) ?
yes yes

• By representing the components of a structure as a list they can
be recursively processed without knowing the functor name.
| ?- f(2,3)=..[F,N|Y], N1 is N*3, L=..[F,N1|Y].
L = f(6,3)?
yes

11/10/04 AIPP Lecture 6: Built-in Predicates 17

Collecting all solutions
• You've seen how to generate all of the solutions to a given

goal, at the SICStus prompt (;):
| ?- member(X, [1,2,3,4]).

X = 1 ? ;
X = 2 ? ;
X = 3 ? ;
X = 4 ? ;
no

• It would be nice if we could generate all of the solutions to
some goal within a program.

• There are three similar built-in predicates for doing this:
findall/3
setof/3
bagof/3

11/10/04 AIPP Lecture 6: Built-in Predicates 18

Meta-predicates
• findall/3, setof/3, and bagof/3 are all
meta-predicates
– they manipulate Prolog’s proof strategy.

findall(X,P,L)
setof(X,P,L) All produce a list L of all the objects X such
bagof(X,P,L) that goal P is satisfied (e.g. age(X,Age)).

• They all repeatedly call the goal P, instantiating the variable X
within P and adding it to the list L.

• They succeed when there are no more solutions.
• Exactly simulate the repeated use of ‘;’ at the SICStus prompt

to find all of the solutions.

11/10/04 AIPP Lecture 6: Built-in Predicates 19

findall/3
• findall/3 is the most straightforward of the three, and

the most commonly used:
| ?- findall(X, member(X, [1,2,3,4]), Results).

Results = [1,2,3,4]
yes

• This reads: `find all of the Xs, such that X is a member of
the list [1,2,3,4] and put the list of results in Results'.

• Solutions are listed in the result in the same order in which
Prolog finds them.

• If there are duplicated solutions, all are included. If there
are infinitely-many solutions, it will never terminate!

11/10/04 AIPP Lecture 6: Built-in Predicates 20

findall/3 (2)
• We can use findall/3 in more sophisticated ways.
• The second argument, which is the goal, might be a

compound goal:
| ?- findall(X, (member(X, [1,2,3,4]), X > 2), Results).

Results = [3,4]?
yes

• The first argument can be a term of any complexity:
|?- findall(X/Y, (member(X,[1,2,3,4]), Y is X * X),

Results).
Results = [1/1, 2/4, 3/9, 4/16]?
yes

11/10/04 AIPP Lecture 6: Built-in Predicates 21

setof/3
• setof/3 works very much like findall/3, except that:

– It produces the set of all results, with any duplicates removed,
and the results sorted.

– If any variables are used in the goal, which do not appear in
the first argument, setof/3 will return a separate result for
each possible instantiation of that variable:

|?-setof(Child, age(Child,Age),Results).
Age = 5,
Results = [ann,tom] ? ;
Age = 7,
Results = [peter] ? ;
Age = 8,
Results = [pat] ? ;
no

age(peter, 7).
age(ann, 5).
age(pat, 8).
age(tom, 5).
age(ann, 5).

Knowledge base

11/10/04 AIPP Lecture 6: Built-in Predicates 22

setof/3 (2)
• We can use a nested call to setof/3 to collect together the

individual results:
| ?- setof(Age/Children, setof(Child,age(Child,Age),

Children), AllResults).
AllResults = [5/[ann,tom],7/[peter],8/[pat]] ?
yes

• If we don't care about a variable that doesn't appear in the first
argument, we use the following form:

| ?- setof(Child, Age^age(Child,Age), Results).
Results = [ann,pat,peter,tom] ? ;
no

• This reads: `Find the set of all children, such that the Child has
an Age (whatever it might be), and put the results in Results.'

11/10/04 AIPP Lecture 6: Built-in Predicates 23

bagof/3
• bagof/3 is very much like setof/3 except:

– that the list of results might contain duplicates,
– and isn’t sorted.
| ?- bagof(Child, age(Child,Age),Results).

Age = 5, Results = [tom,ann,ann] ? ;
Age = 7, Results = [peter] ? ;
Age = 8, Results = [pat] ? ;
no

• bagof/3 is different to findall/3 as it will generate
separate results for all the variables in the goal that do not
appear in the first argument.
| ?- findall(Child, age(Child,Age),Results).

Results = [peter,pat,tom,ann,ann] ? ;
no

11/10/04 AIPP Lecture 6: Built-in Predicates 24

• Showed two techniques for combining lists:
– Use an accumulator to build up result during recursion:

reverse/3
– Build result in the head of the clause during backtracking:

append/3
• Built-in predicates

– Identifying Terms
• var/1, nonvar/1, atom/1, atomic/1,
• number/1, integer/1, float/1,
• compound/1, ground/1

– Decomposing Structures
• =../2, functor/3, arg/3

– Collecting all solutions
• findall/3, setof/3, bagof/3

Summary

