,\
I—l,

OLOC

BN R
L\

07/10/04

List Processing

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith
Lecture 5
07/10/04

AIPP Lecture 5: List Processing

N\

) ldentifying a list
 Last lecture we introduced lists: [a, [], green (bob)]

« We said that lists are recursively defined structures:

“An empty list, [], is a list.
A structure of the form [X, ...]is a list if X is a term and

[...]Is a list, possibly empty.”

OLOC

* This can be tested using the Head and Tail notation,
[H|T], in a recursive rule.

1s a list([]). < Atermis a list if it is an empty list.
1s a list ([[IT]) :- < Aterm is a list if it has two
1s a 1list(T). elements and the second is a list.

BN
-\

I 07/10/04 AIPP Lecture 5: List Processing 2

N\

") Base and Recursive Cases

* A recursive definition, whether in prolog or some other
language (including English!) needs two things.

» A definition of when the recursion terminates.
— Without this the recursion would never stop!

— This is called the base case: is a list([1]).
— Almost always comes before recursive clause

O LOC

* A definition of how we can define the problem in terms of
a similar, smaller problem.

— This is called the recursive case: is a list([|T]):-
is a 1list(T).

There might be more than one base or recursive case.

BN R
-\

| 07/10/04 AIPP Lecture 5: List Processing 3

Focussed Recursion

 To ensure that the predicate terminates, the recursive
case must move the problem closer to a solution.

— If it doesn’t it will loop infinitely.

O G

« With list processing this means stripping away the Head
of a list and recursing on the Talil.

| | ! Head is replaced with
1s_a list([_[T]):- an underscore as we
is a 1list(T). don’t want to use it.

:

The same focussing has to occur when recursing to find
a property or fact.

1s older (Ancestor, Person) : -

Doesn’t focus —= 1S older (Someone, Person),

is older (Ancestor, Someone) .

BN R
-\

I 07/10/04 AIPP Lecture 5: List Processing 4

,\
I_l,

Focussed Recursion (2)

S
Given this program: * A query looking for all
(\ solutions will loop.
__’/> parent (tom, jim) . | ?2-is older (X,Y).
parent (mary, tom) . X = tom,
‘ Y = jim ? ;
is older (0ld, Young) : - X = mary,
parent (O1ld, Young) . Y = tom ? ;
X = mary,
‘ 1s older (Ancestor, Young) :- Y = jim ? ;
1s older (Someone, Young), *loop*

is older (Ancestor, Someone) .

It loops because the recursive clause does not focus

the search it just splits it. If the recursive is older/2
doesn’t find a parent it just keeps recursing on itself

BN R
-\

I 07/10/04 AIPP Lecture 5: List Processing 5

N\

OLOC

))

BN

Focussed Recursion (3)

The correct program: « (Can generate all valid
matches without looping.

parent (tom, jim) . | ?2-is older (X,Y).
parent (mary, tom) . X tom,
Y Jjim ? ;
is older (0ld, Young) : - X mary,
parent (O1ld, Young) . Y tom ? ;
X mary,
1s older (Ancestor, Young) :- Y Jim ?
parent (Someone, Youngqg), no

is older (Ancestor, Someone) .

To make the problem space smaller we need to check
that Young has a parent before recursion. This way we

are not looking for something that isn’t there.

07/10/04 AIPP Lecture 5: List Processing 6

,\
I—l,

List Processing Predicates: Member/2

(

« Member/2 is possibly the most used user-defined
predicate (i.e. you have to define it every time you want to
use it!)

* |t checks to see if a term is an element of a list.

— itreturns yes ifitis
— and fails ifitisn’t.

| ?- member (c, [a,b,c,d]).

O LU

YES + It 1st checks if the Head of the list
unifies with the first argument.
H, |H .
member (H, [H]_J) If yes then succeed.
member (H, [|T]) : - If no then fail first clause.
member (H, T) .| * The 2" clause ignores the head of

the list (which we know doesn’t
match) and recurses on the Talil.

BN R
-\

I 07/10/04 AIPP Lecture 5: List Processing 7

,\
l—l,

List Processing Predicates: Member/2

| 7= member (ringo, [john,paul, ringo,george]) .

Fail (1) : member (ringo, [jJohn|]).
(2) : member (ringo, [|paul, ringo,george]) :-
Call: member (ringo, [paul,ringo,george]) .
Fail(1l): member (ringo, [paul|]).

(2) : member (ringo, [|ringo,george]) :-

Call: member (ringo, [ringo,george]) .

Succeed (1) : member (ringo, [ringo|]1]).

O LOC

1) member (H, [H]]).
2) member (H, [[T]) :-

member (H, T) .

BN R
-\

I 07/10/04 AIPP Lecture 5: List Processing

Quick Aside: Tracing Prolog

« To make Prolog show you its execution of a goal type
trace. at the command line.

— Prolog will show you:
» which goal is Called with which arguments,
« whether the goal succeeds (Exit),
* has to be Redone, or Fails.

— The tracer also indicates the level in the search tree
from which a goal is being called.

« The number next to the goal indicates the level in the tree (top
level being 0).

r\ \/ « The leftmost number is the number assigned to the goal
|

OLOG

(every new goal is given a new number).

« To turn off the tracer type notrace.

I 07/10/04 AIPP Lecture 5: List Processing 9

,\
I_l,

Tracing Member/2

| ?- trace.
| ?- member (ringo, [Jjohn,paul,ringo,georgel]) .
1 1 Call: member (ringo, [john,paul, ringo,george]) °?
2 2 Call: member (ringo, [paul,ringo,george]) °?
3 3 Call: member (ringo, [ringo,george]) °?
3 3 Exit: member (ringo, [ringo, george]) °?
2 2 Exit: member (ringo, [paul,ringo,george]) °?
1 1 Exit: member (ringo, [john,paul, ringo,george]) °?
yeSs

| ?- member (stuart, [John,paul, ringo,george]) .

O LOC

) |)

1 1 Call: member (ringo, [Jjohn,paul, ringo,george]) °?
2 2 Call: member (ringo, [paul,ringo,george]) °?

3 3 Call: member (ringo, [ringo,george]) °?

4 4 Call: member (stuart, [george]) °?

5 5 Call: member (stuart, []) ? <€ []does not match [H|T]
5 5 Fail: member (stuart, []) 2

4 4 Fail: member (stuart, [george]) 7

3 3 Fail: member (ringo, [ringo, george]) °?

2 2 Fail: member (ringo, [paul,ringo,george]) °?

1 1 Fail: member (ringo, [Jjohn,paul, ringo,george]) °?

no

— L\

I 07/10/04 AIPP Lecture 5: List Processing

N\

I Collecting Results

 When processing data in Prolog there are three ways to
collect the results:

1. Compute result at base case first, then use this result as
you backtrack through the program.

2. Accumulate a result as you recurse into the program and

finalise it at the base case.

3. Recurse on an uninstantiated variable and accumulate
results on backtracking.

OLOC

« These all have different uses, effect the order of the
accumulated data differently, and require different
degrees of processing.

BN R
N\

I 07/10/04 AIPP Lecture 5: List Processing 11

N\

O LOC

B R
-\

Compute lower result first.

We want to define a predicate, 1length/2, which takes a list
as its first argument and returns a number as the second
argument that is equal to the length of the list.

We can use recursion to move through the list element by
element and is/2 to count as it goes.

listlength ([[T],N1):-
listlength (T, N),
N1 is N+1.

To make a counter we need to initialise it at a value I.e. zero.

As the counter increases during backtracking it needs to be
Initialised in the base case.

listlength([],0).

07/10/04 AIPP Lecture 5: List Processing 12

,\
I_I,

O LOC

1 1
2 2
3 3
4 4
4 4
5 4
5 4
3 3
6 3
\ 6 3
e
, 7 2
7 2
1 1
rﬂ\\\ N = 3 ? yes
I 07/10/04

listlength([],0).

listlength([|T],N1):-
listlength(T,N),
N1 is N+1.

| ?- listlength([a,b,c],N).
Call:
Call:
Call:
Call:
Exit:
Call:
Exit:
Exit:
Call:
Exit:
Exit:
Call:
Exit:
Exit:

listlength([a,b,c], 489)
listlength([b,c], 1079)
listlength([c], 1668) 72
listlength([], 2257) ?
listlength([],0) 2

1668 is 0O0+1 2

1 is 0+1 7
listlength([c],1) 2
1079 1is 141 2

2 1s 1+1 2
listlength([b,c],2) ?
489 1s 241 7

3 is 2+1 7
listlength([a,b,c],3) ?

AIPP Lecture 5: List Processing

?

Compute lower result first: trace.

?

13

N\

~—/

listlength([],0).
listlength ([|T],N1):

Why compute lower result first?

listlength([],).
listlength([[T],N) :-

N1 is N+1,
listlength (T,N) .

N1 is N+1,
listlength (T,N1).

is/2
fail

OLOC

BN R
-\

| 07/10/04

| ?7-1listlength([a, b, c]
Instantiation error 1in

,N). |?-1listlength([a,b,c],0).

1 Call: listlength([a,b,c],0) ?

2 2 Call: 1055 1s 0+1 72

2 2 Exit: 1 is 0+1 2

3 2 Call: listlength([b,c],1) ?
4 3 Call: 2759 1is 141 ?

4 3 Exit: 2 is 1+1 2

5 3 Call: listlength([c],2) ?

6 4 Call: 4463 1is 2+1 7

6 4 Exit: 3 is 2+1 ?

I 4 Call: listlength([],3) 2

7 4 Exit: listlength([],3) 2

5 3 Exit: listlength([c],2) ?

3 2 Exit: listlength([b,c],1) 7
1 1 Exit: listlength([a,b,c],0)?
yes

AIPP Lecture 5: List Processing 14

¢) Using an Accumulator

* You can also accumulate results as you recurse into the
program, finalising the result at the base.

« Once the result is finalised we need someway of getting
it back out of the program.

listlength ([[T],Acc,Ont) :-

Increase Accumulator
as we recurse

‘ listlength([],Acc,Acc). +— Finalise result.

| 07/10/04

»Accl 1is Acc+l,
listlength (T,Accl,Ont) .

Instantiate result to
Output variable in base case
and pass back.

AIPP Lecture 5: List Processing 15

N\

I)

1 1

O LOC

R W U d oo U W NN
RN W s DD W ww NN

yes

BN =R
-\

| 07/10/04

listlength([a, b, c]
Call:

Call:
Exit:
Call:
Call:
Exit:
Call:
Call:
Exit:
Call:
Exit:
Exit:
Exit:
Exit:

Using an Accumulator (2)

,0,N) .

listlength([a,b,c],0, 501) ?

1096 is 0+1 ?

1 is 0+1 2

listlength([b,c],1, 501) 72

_2817 is 141 7 listlength([],A,R).

2 is 1+1 72 listlength([|T],A,0) :-
listlength([c],2, 501)7 Al is A+1,

4538 is 2+1 ? listlength(T,AL,O).

3 is 2+1 7
listlength([],3, 501) 72
listlength([], 3) 2
listlength([c] 3) ?
listlength ([b,] 1,3) 2
listlength([a,b,c],0,3) 7

AIPP Lecture 5: List Processing 16

,\
I—I,

Using an auxiliary predicate

 When using an accumulator it needs to be initialised at
the right value (e.g. [] or 0).

Make the predicate with the accumulator an auxiliary to
the predicate that the user will call.

listlength (List, Length) : -

listlength2 (List, 0, Length) .

O O

Auxiliary o
: listlength2 ([],A,A). e 1
to main listlenath? ([|T]. &, 0):- Initialise
predicate [gt tli_ eeree e Accumulator
Al 1s A+1,
N listlength2(T,Al1,0).

* This ensures that the accumulator is initialise correctly

and that the user doesn’t have to understand the
workings of your code to use it.

BN R
N\

I 07/10/04 AIPP Lecture 5: List Processing 17

,\
I_I,

OLOC

N\

jﬁ

Combining lists

A common use of an accumulator is to construct lists.

If we want to make a new list out of the combined
elements of two lists we can'’t just make one list the Head
of a new list and the other the tail as:

| ?- Ll=[a,b], L2=[c,d], Z=[L1|L2].
L1 = [a,b], L2 = [c,d], 2 = [la,b],c,d] 7

We need to take each element from L1 and add them to
L2 one at a time.

There are two ways we can do this
— during recursion, or
— backtracking.

07/10/04 AIPP Lecture 5: List Processing 18

,-\’
I_l

Constructing a list during Recursion

| 2= Pred([alb] ’ [CI d] IOU-t) .
out = [a/b/ Cld] .

Desired behaviour

To add L1 to L2 during recursion we can use the bar
notation to decompose L1 and add the Head to L2.

pred([H|T],L2,0ut) : -

pred (T, [H|LZ2],0ut) .
f Accumulator

 We need to have an extra variable (Out) which can be
used to pass back the new list once L1 is empty.

O O

pred([],L2,L2). €< base case: when L1 is empty make
the new list equal to the Output list.

« The base case must go before the recursive case.

BN R
N\

I 07/10/04 AIPP Lecture 5: List Processing 19

,.,\’
I_l

Constructing a list du

ring Recursion (2)

- Always the
| same variable

1, [c,d], 515) 7

la,c,d], 515) 7
b,a,c,d], 515) 7
b,a,c,d], [b,a,c,d]) ?
la,c,d], [b,a,c,d]) ?
l1,lc,d], [b,a,c,d]) 7

If you construct a list through
recursion (on the way down)
and then pass the answer
back the elements will be In
reverse order.

. _/
| ?- pred(la,b]l, [c,d],Out).
1 1 Call: pred([a,b
L\—‘/) 2 2 Call: pred([b],
3 3 Call: pred([],I
3 3 Exit: pred([], I
| 2 2 Exit: pred([b],
1 1 Exit: pred([a,b
Out = [b,a,c,d] ?
S\—’;) veSs
pred([],L2,L2).
\/ pred ([H|T],L2,0ut) : -
(\\ | pred (T, [H|L2],0ut) .
r\\l I 07/10/04 AIPP Lecture 5:

List Processing 20

,\
I—l,

reverse/3

1, [c,d]l, 515) 7
[a,c,d], 515) 7
b,a,c,d], 515) 7
b,a,c,d], [b,a,c,d]) ?
la,c,d], [b,a,c,d]) ?
l1,lc,d], [b,a,c,d]) ?

reverse ([],L2,L2).
reverse ([H|T],L2,0ut) : -
reverse (T, [H|L2],0ut) .

N/
| ?- pred(la,b], [c,d],Out).
1 1 Call: pred([a,b
L\—‘/) 2 2 Call: pred([b],
3 3 Call: pred([],I
3 3 Exit: pred([], I
‘ 2 2 Exit: pred([b],
1 1 Exit: pred([a,b
Out = [b,a,c,d] ?
(_f;) veSs

If you construct a list through
recursion (on the way down)
and then pass the answer
back the elements will be In
reverse order.

BN R
N\

I 07/10/04 AIPP Lecture 5:

List Processing 21

N\

O (

0O

BN R
-\

Constructing a list in backtracking

To maintain the order of list elements we need to
construct the list on the way out of the program, i.e.
through backtracking.

Use the same bar deconstruction as before but add the
head element of L1 to Out in the Head of the clause.

pred ([H|T],L2, [H|Out]) :- < Head is not added
pred (T, L2,0ut) . until backtracking.

Now when we reach the base case we make L2 the

foundation for the new Out list and add our L1 elements
to it during backtracking.

pred([],L2,L2). € base case: when L1 is empty make
the new list equal to the Output list.

07/10/04 AIPP Lecture 5: List Processing 22

,\
l—l,

append/3

Variable changes
at every Call.

append ([H|T] ,L2, [H|Rest]) : -

append (T,L2,Rest) .

. /
| ?- pred2([a,b]l, [c,d],Out). f_
1 1 Call: pred2(la,b]l, [c,d], 515) 7
L\—‘/) 2 2 Call: pred2([b], [c,d], 1131) 7
3 3 Call: pred2([],[c,d], 1702) 7
3 3 Exit: pred2([], [c,d], [c,d]) 7
‘ 2 2 Exit: pred2([b], [d], [b,c,d]) 7
1 1 Exit: pred2([a,b], [c d], [a,b,c,d]) 2
Out = [a,b,c,d] 7
(A ves
_‘/) append([],L2,L2) .

BN R
-\

| 07/10/04

AIPP Lecture 5: List Processing

* append/3 is another very common user-defined list
processing predicate.

23

¢) Computing in reverse

« Both reverse/3 and append/3 can be used

their contents.
| 2= append(X/Y/[a/b/C/d])-

X = []r Y = [alblcld] ?
]/ Y = [b,c,d] ? 7
? append (T,L2,Rest) .

append([],L2,L2) .

(\ backwards to make two lists out of one.
\) « This can be a useful way to strip lists apart and check

XX X X
|

X = [a,b] ? ;

no

\/ no
. | ?—append (X, [c,d], [a,b,c,d]) .

I 07/10/04 AIPP Lecture 5: List Processing 24

append ([H|T] ,L2, [H|Rest]) : -

¢)) Computing in reverse

« Both reverse/3 and append/3 can be used

their contents.

b,c,d] » ; reverse([],L2,L2).
c,d] ? ; reverse([H|T],L2,0ut):-

, Y

=[], Y = [a
= [
; [d] ? ; reverse (T, [H|L2] ,0ut).

(\ backwards to make two lists out of one.
\) « This can be a useful way to strip lists apart and check

r\/ | ?-reverse(ld,c,b,a],Y, [a,b,c,d]) .
Y = [] 7

I 07/10/04 AIPP Lecture 5: List Processing 25

,.Q\’
I_]

Summary

 Base and recursive cases

Using focused recursion to stop infinite loops.
List processing through recursion: member/2

* |Introduced the Prolog tracer.

« Showed three techniques for collecting results:

— Recursively find a result, then revise it at each level.
* listlength/3

— Use an accumulator to build up result during
recursion.

* reverse/3
— Build result in the head of the clause during

O O

backtracking.
* append/3

BN R
-\

I 07/10/04 AIPP Lecture 5: List Processing 26

