
07/10/04 AIPP Lecture 5: List Processing 1

List Processing

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 5
07/10/04

07/10/04 AIPP Lecture 5: List Processing 2

Identifying a list
• Last lecture we introduced lists: [a,[],green(bob)]
• We said that lists are recursively defined structures:

“An empty list, [], is a list.
A structure of the form [X, …] is a list if X is a term and

[…] is a list, possibly empty.”

• This can be tested using the Head and Tail notation,
[H|T], in a recursive rule.
is_a_list([]). � A term is a list if it is an empty list.
is_a_list([_|T]):- � A term is a list if it has two

is_a_list(T). elements and the second is a list.

07/10/04 AIPP Lecture 5: List Processing 3

Base and Recursive Cases
• A recursive definition, whether in prolog or some other

language (including English!) needs two things.

• A definition of when the recursion terminates.
– Without this the recursion would never stop!
– This is called the base case: is_a_list([]).
– Almost always comes before recursive clause

• A definition of how we can define the problem in terms of
a similar, smaller problem.
– This is called the recursive case: is_a_list([_|T]):-

is_a_list(T).

• There might be more than one base or recursive case.

07/10/04 AIPP Lecture 5: List Processing 4

Focussed Recursion
• To ensure that the predicate terminates, the recursive

case must move the problem closer to a solution.
– If it doesn’t it will loop infinitely.

• With list processing this means stripping away the Head
of a list and recursing on the Tail.

is_a_list([_|T]):-
is_a_list(T).

• The same focussing has to occur when recursing to find
a property or fact.

is_older(Ancestor,Person):-
is_older(Someone,Person),
is_older(Ancestor,Someone).

Doesn’t focus

Head is replaced with
an underscore as we
don’t want to use it.

07/10/04 AIPP Lecture 5: List Processing 5

Focussed Recursion (2)
Given this program:

parent(tom,jim).
parent(mary,tom).

is_older(Old,Young):-
parent(Old,Young).

is_older(Ancestor,Young):-
is_older(Someone,Young),
is_older(Ancestor,Someone).

• A query looking for all
solutions will loop.

|?-is_older(X,Y).
X = tom,
Y = jim ? ;
X = mary,
Y = tom ? ;
X = mary,
Y = jim ? ;
loop

It loops because the recursive clause does not focus
the search it just splits it. If the recursive is_older/2

doesn’t find a parent it just keeps recursing on itself

07/10/04 AIPP Lecture 5: List Processing 6

Focussed Recursion (3)
The correct program:

parent(tom,jim).
parent(mary,tom).

is_older(Old,Young):-
parent(Old,Young).

is_older(Ancestor,Young):-
parent(Someone,Young),
is_older(Ancestor,Someone).

• Can generate all valid
matches without looping.

|?-is_older(X,Y).
X = tom,
Y = jim ? ;
X = mary,
Y = tom ? ;
X = mary,
Y = jim ? ;
no

To make the problem space smaller we need to check
that Young has a parent before recursion. This way we

are not looking for something that isn’t there.

07/10/04 AIPP Lecture 5: List Processing 7

List Processing Predicates: Member/2
• Member/2 is possibly the most used user-defined

predicate (i.e. you have to define it every time you want to
use it!)

• It checks to see if a term is an element of a list.
– it returns yes if it is
– and fails if it isn’t.

| ?- member(c,[a,b,c,d]).
yes

member(H,[H|_]).
member(H,[_|T]):-

member(H,T).

• It 1st checks if the Head of the list
unifies with the first argument.

• If yes then succeed.
• If no then fail first clause.

• The 2nd clause ignores the head of
the list (which we know doesn’t
match) and recurses on the Tail.

07/10/04 AIPP Lecture 5: List Processing 8

|?- member(ringo,[john,paul,ringo,george]).
Fail(1): member(ringo,[john|_]).

(2): member(ringo,[_|paul,ringo,george]):-
Call: member(ringo,[paul,ringo,george]).

Fail(1): member(ringo,[paul|_]).
(2): member(ringo,[_|ringo,george]):-

Call: member(ringo,[ringo,george]).
Succeed(1): member(ringo,[ringo|_]]).

List Processing Predicates: Member/2

1) member(H,[H|_]).
2) member(H,[_|T]):-

member(H,T).

07/10/04 AIPP Lecture 5: List Processing 9

Quick Aside: Tracing Prolog
• To make Prolog show you its execution of a goal type
trace. at the command line.

– Prolog will show you:
• which goal is Called with which arguments,
• whether the goal succeeds (Exit),
• has to be Redone, or Fails.

– The tracer also indicates the level in the search tree
from which a goal is being called.

• The number next to the goal indicates the level in the tree (top
level being 0).

• The leftmost number is the number assigned to the goal
(every new goal is given a new number).

• To turn off the tracer type notrace.

07/10/04 AIPP Lecture 5: List Processing 10

| ?- trace.
| ?- member(ringo,[john,paul,ringo,george]).

1 1 Call: member(ringo,[john,paul,ringo,george]) ?
2 2 Call: member(ringo,[paul,ringo,george]) ?
3 3 Call: member(ringo,[ringo,george]) ?
3 3 Exit: member(ringo,[ringo,george]) ?
2 2 Exit: member(ringo,[paul,ringo,george]) ?
1 1 Exit: member(ringo,[john,paul,ringo,george]) ?

yes

| ?- member(stuart,[john,paul,ringo,george]).
1 1 Call: member(ringo,[john,paul,ringo,george]) ?
2 2 Call: member(ringo,[paul,ringo,george]) ?
3 3 Call: member(ringo,[ringo,george]) ?
4 4 Call: member(stuart,[george]) ?
5 5 Call: member(stuart,[]) ? � [] does not match [H|T]
5 5 Fail: member(stuart,[]) ?
4 4 Fail: member(stuart,[george]) ?
3 3 Fail: member(ringo,[ringo,george]) ?
2 2 Fail: member(ringo,[paul,ringo,george]) ?
1 1 Fail: member(ringo,[john,paul,ringo,george]) ?

no

Tracing Member/2

07/10/04 AIPP Lecture 5: List Processing 11

Collecting Results
• When processing data in Prolog there are three ways to

collect the results:
1. Compute result at base case first, then use this result as

you backtrack through the program.
2. Accumulate a result as you recurse into the program and

finalise it at the base case.
3. Recurse on an uninstantiated variable and accumulate

results on backtracking.

• These all have different uses, effect the order of the
accumulated data differently, and require different
degrees of processing.

07/10/04 AIPP Lecture 5: List Processing 12

• We want to define a predicate, length/2, which takes a list
as its first argument and returns a number as the second
argument that is equal to the length of the list.

• We can use recursion to move through the list element by
element and is/2 to count as it goes.

• To make a counter we need to initialise it at a value i.e. zero.
• As the counter increases during backtracking it needs to be

initialised in the base case.

Compute lower result first.

listlength([_|T],N1):-
listlength(T,N),
N1 is N+1.

listlength([],0).

07/10/04 AIPP Lecture 5: List Processing 13

Compute lower result first: trace.
listlength([],0).
listlength([_|T],N1):-

listlength(T,N),
N1 is N+1.

| ?- listlength([a,b,c],N).
1 1 Call: listlength([a,b,c],_489) ?
2 2 Call: listlength([b,c],_1079) ?
3 3 Call: listlength([c],_1668) ?
4 4 Call: listlength([],_2257) ?
4 4 Exit: listlength([],0) ?
5 4 Call: _1668 is 0+1 ?
5 4 Exit: 1 is 0+1 ?
3 3 Exit: listlength([c],1) ?
6 3 Call: _1079 is 1+1 ?
6 3 Exit: 2 is 1+1 ?
2 2 Exit: listlength([b,c],2) ?
7 2 Call: _489 is 2+1 ?
7 2 Exit: 3 is 2+1 ?
1 1 Exit: listlength([a,b,c],3) ?

N = 3 ? yes

07/10/04 AIPP Lecture 5: List Processing 14

Why compute lower result first?

|?-listlength([a,b,c],0).
1 Call: listlength([a,b,c],0) ?
2 2 Call: _1055 is 0+1 ?
2 2 Exit: 1 is 0+1 ?
3 2 Call: listlength([b,c],1) ?
4 3 Call: _2759 is 1+1 ?
4 3 Exit: 2 is 1+1 ?
5 3 Call: listlength([c],2) ?
6 4 Call: _4463 is 2+1 ?
6 4 Exit: 3 is 2+1 ?
7 4 Call: listlength([],3) ?
7 4 Exit: listlength([],3) ?
5 3 Exit: listlength([c],2) ?
3 2 Exit: listlength([b,c],1) ?
1 1 Exit: listlength([a,b,c],0)?
yes

listlength([],0).
listlength([_|T],N1):-
N1 is N+1,
listlength(T,N).

listlength([],_).
listlength([_|T],N):-

N1 is N+1,
listlength(T,N1).

|?-listlength([a,b,c],N).
Instantiation error in
is/2
fail

07/10/04 AIPP Lecture 5: List Processing 15

Using an Accumulator
• You can also accumulate results as you recurse into the

program, finalising the result at the base.
• Once the result is finalised we need someway of getting

it back out of the program.

listlength([],Acc,Acc).

listlength([_|T],Acc,Out):-
Acc1 is Acc+1,
listlength(T,Acc1,Out).

Finalise result.

Increase Accumulator
as we recurse

Instantiate result to
Output variable in base case

and pass back.

07/10/04 AIPP Lecture 5: List Processing 16

Using an Accumulator (2)
listlength([a,b,c],0,N).

1 1 Call: listlength([a,b,c],0,_501) ?
2 2 Call: _1096 is 0+1 ?
2 2 Exit: 1 is 0+1 ?
3 2 Call: listlength([b,c],1,_501) ?
4 3 Call: _2817 is 1+1 ?
4 3 Exit: 2 is 1+1 ?
5 3 Call: listlength([c],2,_501)?
6 4 Call: _4538 is 2+1 ?
6 4 Exit: 3 is 2+1 ?
7 4 Call: listlength([],3,_501) ?
7 4 Exit: listlength([],3,3) ?
5 3 Exit: listlength([c],2,3) ?
3 2 Exit: listlength([b,c],1,3) ?
1 1 Exit: listlength([a,b,c],0,3) ?

N = 3 ?
yes

listlength([],A,A).
listlength([_|T],A,O):-

A1 is A+1,
listlength(T,A1,O).

07/10/04 AIPP Lecture 5: List Processing 17

Using an auxiliary predicate
• When using an accumulator it needs to be initialised at

the right value (e.g. [] or 0).
• Make the predicate with the accumulator an auxiliary to

the predicate that the user will call.

• This ensures that the accumulator is initialise correctly
and that the user doesn’t have to understand the
workings of your code to use it.

listlength(List,Length):-
listlength2(List,0,Length).

listlength2([],A,A).
listlength2([_|T],A,O):-

A1 is A+1,
listlength2(T,A1,O).

Auxiliary
to main

predicate
Initialise

Accumulator

07/10/04 AIPP Lecture 5: List Processing 18

Combining lists
• A common use of an accumulator is to construct lists.
• If we want to make a new list out of the combined

elements of two lists we can’t just make one list the Head
of a new list and the other the tail as:
| ?- L1=[a,b], L2=[c,d], Z=[L1|L2].
L1 = [a,b], L2 = [c,d], Z = [[a,b],c,d] ?

• We need to take each element from L1 and add them to
L2 one at a time.

• There are two ways we can do this
– during recursion, or
– backtracking.

07/10/04 AIPP Lecture 5: List Processing 19

|?- pred([a,b],[c,d],Out).
Out = [a,b,c,d].

• To add L1 to L2 during recursion we can use the bar
notation to decompose L1 and add the Head to L2.
pred([H|T],L2,Out):-

pred(T,[H|L2],Out).

• We need to have an extra variable (Out) which can be
used to pass back the new list once L1 is empty.
pred([],L2,L2). � base case: when L1 is empty make

the new list equal to the Output list.
• The base case must go before the recursive case.

Desired behaviour

Constructing a list during Recursion

Accumulator

07/10/04 AIPP Lecture 5: List Processing 20

| ?- pred([a,b],[c,d],Out).
1 1 Call: pred([a,b],[c,d],_515) ?
2 2 Call: pred([b],[a,c,d],_515) ?
3 3 Call: pred([],[b,a,c,d],_515) ?
3 3 Exit: pred([],[b,a,c,d],[b,a,c,d]) ?
2 2 Exit: pred([b],[a,c,d],[b,a,c,d]) ?
1 1 Exit: pred([a,b],[c,d],[b,a,c,d]) ?
Out = [b,a,c,d] ?

yes

pred([],L2,L2).
pred([H|T],L2,Out):-

pred(T,[H|L2],Out).

If you construct a list through
recursion (on the way down)
and then pass the answer

back the elements will be in
reverse order.

Constructing a list during Recursion (2)
Always the

same variable

07/10/04 AIPP Lecture 5: List Processing 21

reverse/3
| ?- pred([a,b],[c,d],Out).

1 1 Call: pred([a,b],[c,d],_515) ?
2 2 Call: pred([b],[a,c,d],_515) ?
3 3 Call: pred([],[b,a,c,d],_515) ?
3 3 Exit: pred([],[b,a,c,d],[b,a,c,d]) ?
2 2 Exit: pred([b],[a,c,d],[b,a,c,d]) ?
1 1 Exit: pred([a,b],[c,d],[b,a,c,d]) ?
Out = [b,a,c,d] ?

yes

reverse([],L2,L2).
reverse([H|T],L2,Out):-

reverse(T,[H|L2],Out).

If you construct a list through
recursion (on the way down)
and then pass the answer

back the elements will be in
reverse order.

07/10/04 AIPP Lecture 5: List Processing 22

• To maintain the order of list elements we need to
construct the list on the way out of the program, i.e.
through backtracking.

• Use the same bar deconstruction as before but add the
head element of L1 to Out in the Head of the clause.
pred([H|T],L2,[H|Out]):- � Head is not added

pred(T,L2,Out). until backtracking.
• Now when we reach the base case we make L2 the

foundation for the new Out list and add our L1 elements
to it during backtracking.
pred([],L2,L2). � base case: when L1 is empty make

the new list equal to the Output list.

Constructing a list in backtracking

07/10/04 AIPP Lecture 5: List Processing 23

append/3
| ?- pred2([a,b],[c,d],Out).
1 1 Call: pred2([a,b],[c,d],_515) ?
2 2 Call: pred2([b],[c,d],_1131) ?
3 3 Call: pred2([],[c,d],_1702) ?
3 3 Exit: pred2([],[c,d],[c,d]) ?
2 2 Exit: pred2([b],[c,d],[b,c,d]) ?
1 1 Exit: pred2([a,b],[c,d],[a,b,c,d]) ?
Out = [a,b,c,d] ?

yes
append([],L2,L2).
append([H|T],L2,[H|Rest]):-

append(T,L2,Rest).

* append/3 is another very common user-defined list
processing predicate.

Variable changes
at every Call.

07/10/04 AIPP Lecture 5: List Processing 24

append([],L2,L2).
append([H|T],L2,[H|Rest]):-

append(T,L2,Rest).

Computing in reverse
• Both reverse/3 and append/3 can be used

backwards to make two lists out of one.
• This can be a useful way to strip lists apart and check

their contents.
| ?- append(X,Y,[a,b,c,d]).

X = [], Y = [a,b,c,d] ? ;
X = [a], Y = [b,c,d] ? ;
X = [a,b], Y = [c,d] ? ;
X = [a,b,c], Y = [d] ? ;
X = [a,b,c,d], Y = [] ? ;
no

|?-append(X,[c,d],[a,b,c,d]).
X = [a,b] ? ;
no

07/10/04 AIPP Lecture 5: List Processing 25

reverse([],L2,L2).
reverse([H|T],L2,Out):-

reverse(T,[H|L2],Out).

Computing in reverse
• Both reverse/3 and append/3 can be used

backwards to make two lists out of one.
• This can be a useful way to strip lists apart and check

their contents.
| ?- reverse(X,Y,[a,b,c,d]).

X = [], Y = [a,b,c,d] ? ;
X = [a], Y = [b,c,d] ? ;
X = [b,a], Y = [c,d] ? ;
X = [c,b,a], Y = [d] ? ;
X = [d,c,b,a], Y = [] ? ;
loop

|?-reverse([d,c,b,a],Y,[a,b,c,d]).
Y = [] ?
yes

07/10/04 AIPP Lecture 5: List Processing 26

Summary
• Base and recursive cases
• Using focused recursion to stop infinite loops.
• List processing through recursion: member/2
• Introduced the Prolog tracer.
• Showed three techniques for collecting results:

– Recursively find a result, then revise it at each level.
• listlength/3

– Use an accumulator to build up result during
recursion.

• reverse/3
– Build result in the head of the clause during

backtracking.
• append/3

