
30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 1

Recursion, Structures, and
Lists

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 4
04/10/04

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 2

The central ideas of Prolog
• SUCCESS/FAILURE

– any computation can “succeed'' or “fail'', and this is used as
a ‘test‘ mechanism.

• MATCHING
– any two data items can be compared for similarity, and values

can be bound to variables in order to allow a match to
succeed.

• SEARCHING
– the whole activity of the Prolog system is to search through

various options to find a combination that succeeds.
• Main search tools are backtracking and recursion

• BACKTRACKING
– when the system fails during its search, it returns to previous

choices to see if making a different choice would allow
success.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 3

Likes program
1) drinks(alan,beer).
2) likes(alan,coffee).
3) likes(heather,coffee).

4) likes(Person,Drink):-

drinks(Person,Drink).

5) likes(Person,Somebody):-
likes(Person,Drink),

likes(Somebody,Drink).

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 4

Representing Proof using Trees
• To help us understand Prolog’s proof strategy we can

represent its behaviour using AND/OR trees.
1. Query is the top-most point (node) of the tree.
2. Tree grows downwards (looks more like roots!).
3. Each branch denotes a subgoal.

1. The branch is labelled with the number of the matching clause and
2. any variables instantiated when matching the clause head.

4. Each branch ends with either:
1. A successful match ,
2. A failed match , or
3. Another subgoal.

|?- likes(alan,X).

2 X/coffee

X = coffee

1st solution
= “Alan likes coffee.”

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 5

Representing Proof using Trees (2)

|?- likes(alan,X).

X/coffee
X = coffee

• Using the tree we can see what happens when we ask
for another match (;)

2
4

drinks(alan,X).

1 X/beer

X = beer
2nd solution

= “Alan likes beer because Alan drinks beer.”

1st match is failed
and forgotten

Backtracking

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 6

Recursion using Trees

|?- likes(alan,X).

X/coffee
X = coffee

• When a predicate calls itself within its body we say
the clause is recursing

2
4

1 X/beer

X = beer

5

likes(alan,Drink)

Conjoined subgoals

likes(Somebody,Drink)
drinks(alan,X).

X/coffee 2

X = coffee

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 7

|?- likes(alan,X).

X/coffee
X = coffee

2
4

1 X/beer

X = beer

3rd solution = “Alan likes Alan because Alan likes coffee.”

5

likes(alan,coffee)
likes(Somebody,coffee)

drinks(alan,X).

X/coffee 2

X = coffee

Somebody
/alan

2

Somebody = alan

Recursion using Trees (2)
• When a predicate calls itself within its body we say

the clause is recursing

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 8

|?- likes(alan,X).

X/coffee
X = coffee

2
4

1 X/beer

X = beer

4th solution =
“Alan likes Heather

because Heather likes coffee.”

5

likes(alan,coffee) likes(Somebody,coffee)
drinks(alan,X).

X/coffee 2

X = coffee

Somebody
/alan 2

Somebody
= alan

Somebody
/ heather3

Somebody
= heather

• When a predicate calls itself within its body we say
the clause is recursing

Recursion using Trees (3)

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 9

Infitite Recursive Loop
• If a recursive clause is called with an incorrect goal it will loop

as it can neither prove it
nor disprove it.

likes(Someb,coffee)

2Somebody
= alan

3

Somebody
= heather

5
likes(Someb,coffee)

Someb = alan
2 likes(coffee,coffee)

likes(coffee,X) likes(coffee,X)

likes(coffee,X2)

likes(coffee,X3)
likes(X,X2)

likes(X2,X3)

likes/2 is a
left recursive clause.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 10

Why use recursion?
• It allows us to define very clear and elegant code.

– Why repeat code when you can reuse existing code.
• Relationships may be recursive

e.g. “X is my ancestor if X is my Ancestor’s ancestor.”
• Data is represented recursively and best processed

iteratively.
– Grammatical structures can contain themselves
– E.g. NP � (Det) N (PP), PP � P (NP)
– Ordered data: each element requires the same processing

• Allows Prolog to perform complex search of a
problem space without any dedicated algorithms.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 11

Prolog Data Objects (Terms)
Simple objects Structured Objects

Constants

IntegersAtoms

Symbols
Strings

Signs

Variables Structures Lists

a
bob

l8r_2day ‘a’
‘Bob’

‘L8r 2day’

<--->
==>
…

-6
987

X
A_var
_Var

date(4,10,04)
person(bob,48)

[]
[a,b,g]

[[a],[b]]
[bit(a,d),a,’Bob’]

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 12

Structures
• To create a single data element from a collection of

related terms we use a structure.
• A structure is constructed from a functor (a constant

symbol) and one of more components.
somerelationship(a,b,c,[1,2,3])

• The components can be of any type: atoms,
integers, variables, or structures.

• As functors are treated as data objects just like
constants they can be unified with variables

|?- X = date(04,10,04).
X = date(04,10,04)?
yes

functor

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 13

Structure unification
• 2 structures will unify if

– the functors are the same,
– they have the same number of components,
– and all the components unify.
| ?- person(Nm,london,Age) = person(bob,london,48).
Nm = bob,
Age = 48?
yes
| ?- person(Someone,_,45) = person(harry,dundee,45).
Someone = harry ?
yes

• (A plain underscore ‘_’ is not bound to any value. By using it you
are telling Prolog to ignore this argument and not report it.)

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 14

Structure unification (2)
• A structure may also have another structure as a

component.
|?-addr(flat(4),street(‘Home Str.’),postcode(eh8_9lw))

= addr(flat(Z),Yy,postcode(Xxx)).
Z = 4,
Yy = street(‘Home Str.’),
Xxx = eh8_9lw ?
yes

• Unification of nested structures
works recursively:
– first it unifies the entire structure,
– then it tries to unify the nested structures.

Remember to
close brackets!

Reported variables are
ordered according to
number of characters
in the variable name.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 15

Structures = facts?
• The syntax of structures and facts is identical but:

– Structures are not facts as they are not stored in the database
as being true (followed by a period ‘.’);

– Structures are generally just used to group data;
– Functors do not have to match predicate names.

• However predicates can be stored as structures
command(X):-

X.

| ?- X = write(‘Passing a command’), command(X).
Passing a command
X = write('Passing a command') ?
yes

By instantiating a variable with a structure which
is also a predicate you can pass commands.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 16

Lists
• A collection of ordered data.
• Has zero or more elements enclosed by square

brackets (‘[]’) and separated by commas (‘,’).
[a] � a list with one element
[] � an empty list

1 2 3
1 2

[34,tom,[2,3]] � a list with 3 elements where the
3rd element is a list of 2 elements.

• Like any object, a list can be unified with a variable
|?- [Any, list, ‘of elements’] = X.
X = [Any, list, ‘of elements’]?
yes

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 17

List Unification
• Two lists unify if they are the same length and all their

elements unify.
|?-[a,B,c,D]=[A,b,C,d]. |?-[(a+X),(Y+b)]=[(W+c),(d+b)].
A = a, W = a,
B = b, X = c,
C = c, Y = d?
D = d ? yes
yes

|?- [[X,a]]=[b,Y]. |?-[[a],[B,c],[]]=[X,[b,c],Y].
no B = b,

X = [a],
Y = [] ?
yes

Length 1 Length 2

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 18

Definition of a List
• Lists are recursively defined structures.

“An empty list, [], is a list.
A structure of the form [X, …] is a list if X is a term and

[…] is a list, possibly empty.”
• This recursiveness is made explicit by the bar notation

– [Head|Tail] (‘|’ = bottom left PC keyboard character)

• Head must unify with a single term.
• Tail unifies with a list of any length, including an empty

list, [].
– the bar notation turns everything after the Head into a

list and unifies it with Tail.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 19

Head and Tail
|?-[a,b,c,d]=[Head|Tail]. |?-[a,b,c,d]=[X|[Y|Z]].
Head = a, X = a,
Tail = [b,c,d]? Y = b,
yes Z = [c,d];

yes

|?-[a] = [H|T]. |?-[a,b,c]=[W|[X|[Y|Z]]].
H = a, W = a,
T = []; X = b,
yes Y = c,

Z = []? yes

|?-[] = [H|T]. |?-[a|[b|[c|[]]]]= List.
no List = [a,b,c]?

yes

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 20

Summary
• Prolog’s proof strategy can be represented using

AND/OR trees.
• Tree representations allow us trace Prolog’s search

for multiple matches to a query.
• They also highlight the strengths and weaknesses of

recursion (e.g. economical code vs. infinite looping).
• Recursive data structures can be represented as

structures or lists.
• Structures can be unified with variables then used

as commands.
• Lists can store ordered data and allow its sequential

processing through recursion.

