-RULUG

Recursion, Structures, and
Lists

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 4
04/10/04

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists

The central ideas of Prolog

SUCCESS/FAILURE

— any computation can “succeed" or "fail", and this is used as
a ‘test’ mechanism.

MATCHING

— any two data items can be compared for similarity, and values
can be bound to variables in order to allow a match to
succeed.

SEARCHING

— the whole activity of the Prolog system is to search through
various options to find a combination that succeeds.

« Main search tools are backtracking and recursion

BACKTRACKING

— when the system fails during its search, it returns to previous
choices to see if making a different choice would allow
1 success.

e

e

)
Rl

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 2

!

ULUG

))

30/09/04

Likes program

1) drinks(alan,beer).
2) likes(alan,coffee).
3) likes (heather,coffee).

4) likes (Person,Drink) :-

drinks (Person, Drink) .

5) likes (Person, Somebody) : -

likes (Person, Drink),

likes (Somebody, Drink) .

AIPP Lecture 3: Recursion, Structures, and Lists 3

Representing Proof using Trees

* To help us understand Prolog’s proof strategy we can
represent its behaviour using AND/OR trees.

Query is the top-most point (node) of the tree.
Tree grows downwards (looks more like roots!).

N~

Each branch denotes a subgoal.
1. The branch is labelled with the number of the matching clause and
2. any variables instantiated when matching the clause head.
4. Each branch ends with either: |?- likes(alan,X).

1. A successful matchO :
2. A failed match(X), or

3. Another subgoal.

UL UG

2/ Xl/coffee

I

1st solution

= “Alan likes coffee.”

DA D

] X = coffee

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 4

Representing Proof using Trees (2)

« Using the tree we can see what happens when we ask
for another match (;)

| ?— likes (alan, X).

ULUG

2 Backtracking
X/coffee 4
X = da‘fee
drinks(alan,X).
1st match is failed
and forgotten 1 | X/beer
r (_: X = beer
2nd solution
r 1 = “Alan likes beer because Alan drinks beer.”

I 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 5

Recursion using Trees

« When a predicate calls itself within its body we say
the clause is recursing

| ?— likes (alan, X).

Conjoined subgoals

X/coffee 4

X = coff
coriee drlnks alan X). likes(alan,Drink)

likes(Somebody,Drink)
eer X/coffee\ 2
X = beer

X = coffee

ULUG

)
!

_)

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 6

Recursion using Trees (2)

« When a predicate calls itself within its body we say

the clause is recursing
() | 7= likes (alan,X) .

X/coffee

X = coff
Cconee drinks(alan,X). likes(alan,coffee)

likes(Somebody,coffee)
X/beer X/coffee
Somebody\ 2
\(—‘ X = beer falan

X = coffee

Somebody = alan

f"] 3rd solution = “Alan likes Alan because Alan likes coffee.”

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 7

Recursion using Trees (3)

« When a predicate calls itself within its body we say

the clause is recursing
() | 7= likes (alan,X) .

X/coffee
X = coffee drinks(alan,X).

likes(alan,coffee) likes(Somebody,coffee)

1/ X/beer S bod
choffee\z Somebody PMeboay

“Alan likes Heather

. = alan
] because Heather likes coffee.”

e / heather
r\ (_4 X = beer e (5
X = coffee
. " — Somebody
4th golution Somebody = heather

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 8

Infitite Recursive Loop

- If a recursive clause is called with an incorrect goal it will loop
as it can neither prove it
nor disproveit. el

ULUG

!

BAD

Somebody

= alan ikes(Someb,coffee)
Somebody 2 / likes(coffee,coffee)
= heather Someb = alan

likes/2 isa likes(coffee, X) Ilkes(ccszee X)
left recursive clause.
likes(coffee, X2))
A likes(X,X2)
I k ff X \““"':::""'::"..
- eS(CO °e 3)||kes(>§g X3)

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 9

e

a

)
R

Why use recursion?

It allows us to define very clear and elegant code.
— Why repeat code when you can reuse existing code.

Relationships may be recursive
e.g. “X'is my ancestor if X is my Ancestor’s ancestor.”

Data is represented recursively and best processed
iteratively.

— Grammatical structures can contain themselves
— E.g. NP = (Det) N (PP), PP = P (NP)
— Ordered data: each element requires the same processing

Allows Prolog to perform complex search of a
problem space without any dedicated algorithms.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 10

Prolog Data Objects (Terms)

/\

(,‘: W SW&
Constants Variables Structures Lists
‘ X date (4,10,04) []
A var person(bob,48) [a,b,qg]
Atoms Integers _Var [[al, [b]]
— [bit (a,d),a, Bob’]
987
\ Symbols Signs
r (_‘ a Strings ____o
I bob ==>
18r 2day &'
‘Bob’
(—\] ‘L8r 2day’

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 11

Structures

« To create a single data element from a collection of
related terms we use a structure.

A structure is constructed from a functor (a constant

symbol) and one of more components.
ng?r

gomerelationshiﬁ(a,b,c,[1,2,3])

« The components can be of any type: atoms,
iIntegers, variables, or structures.

* As functors are treated as data objects just like
constants they can be unified with variables
|?2- X = date(04,10,04).
X = date(04,10,04)?
] yes

O 0G

)
!

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 12

CD Structure unification

« 2 structures will unify if

() — the functors are the same,

— they have the same number of components,
| — and all the components unify.

| ?- person (Nm, london,Age) = person (bob, london, 48) .
Nm = bob,
(—-__\ Age = 487
) yes
| ?- person(Someone, ,45) = person (harry,dundee,45).

\ Someone harry °?
| | yes
|

* (A plain underscore ‘' is not bound to any value. By using it you
r] are telling Prolog to ignore this argument and not report it.)

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 13

C_D Structure unification (2)

» A structure may also have another structure as a

() component.
| ?—addr (flat (4) ,street (‘Home Str.’),postcode (eh8 91w))

= addr (flat(Z),Yy,postcode (Xxx)) . T
i Z = 4, Remember to
Yy = street (‘Home Str.’), close brackets!

Kxx = eh8 _Slw 2 Reported variables are

yes ordered according to

number of characters

Unification of nested structures in the variable name.

r r_‘ works recursively:

— first it unifies the entire structure,

— then it tries to unify the nested structures.

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 14

Structures = facts?

« The syntax of structures and facts is identical but:

— Structures are not facts as they are not stored in the database
as being true (followed by a period “.");

— Structures are generally just used to group data;

ae

— Functors do not have to match predicate names.

 However predicates can be stored as structures

command (X) : -

X. By instantiating a variable with a structure which
IS also a predicate you can pass commands.

a

| ?- X = write(‘Passing a command’), command (X) .

Passing a command

X = write('Passing a command') °?

] yes

)
Rl

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 15

Lists

* A collection of ordered data.

(' Has zero or more elements enclosed by square

brackets (‘[]') and separated by commas (',’).
[a] < a list with one element
[] < an empty list

4,tom, [2,3]] < alistwith 3 elements where the
3d element is a list of 2 elements.

| 72— [Any, list, ‘of elements’] = X.

X = [Any, list, ‘of elements’]?
1 yes

r (_‘ « Like any object, a list can be unified with a variable

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 16

L

3
\

List Unification

« Two lists unify if they are the same length and all their
elements unify.

|?-[a,B,c,D]=[A,b,C,d]. |?2-[(a+X), (Y+b)]=[(W+c), (d+b)].
A = a, W = a,
B = b, X = c,
C = ¢, Y = d?
D =d? yes
yes
| 2= [M]=[b,Y]- | ?=-[lal, [B,cl,[1]1=[X, [b,c],Y]
no B = b,
| { X = [al,
Length 1 | | Length 2 Y = [] °?

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 17

Definition of a List

 Lists are recursively defined structures.

“An empty list, [], is a list.

A structure of the form [X, ...]is a list if X is a term and
[...] Is a list, possibly empty.”

» This recursiveness is made explicit by the bar notation
— [Head|Tai1l] (‘| = bottom left PC keyboard character)

UL UG

« Head must unify with a single term.

rr—l Tail unifies with a list of any length, including an empty
list, [].

— the bar notation turns everything after the Head into a
r—\] list and unifies it with Tail.

| 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 18

ULUG

)
!

30/09/04

Head and Tall

|?-[a,b,c,d]=[Head|Tail].

Head = a,

Tail = [b,c,d]?

yves

|?_[alblcld]:[xl [Y[Z]].

Y = Db,
4 = [Cld]l
ves

W = a,
X = Db,
Y = ¢C,
Z = []7? yes

|?=[lal [b|[c|[]]
List = [a,b,c]?

ves

]]= List.

AIPP Lecture 3: Recursion, Structures, and Lists 19

UL UG

!

DA D

Summary

Prolog’s proof strategy can be represented using
AND/OR trees.

Tree representations allow us trace Prolog’s search
for multiple matches to a query.

They also highlight the strengths and weaknesses of
recursion (e.g. economical code vs. infinite looping).

Recursive data structures can be represented as
Structures or lists.

Structures can be unified with variables then used
as commands.

Lists can store ordered data and allow its sequential
processing through recursion.

30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 20

