
30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 1

Tests, Backtracking, and
Recursion

Artificial Intelligence Programming in Prolog
Lecture 3
30/09/04

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 2

Re-cap
• A Prolog program consists of predicate definitions.
• A predicate denotes a property or relationship between objects.
• Definitions consist of clauses.
• A clause has a head and a body (Rule) or just a head (Fact).
• A head consists of a predicate name and arguments.
• A clause body consists of a conjunction of terms.
• Terms can be constants, variables, or compound terms.
• We can set our program goals by typing a command that unifies

with a clause head.
• A goal unifies with clause heads in order (top down).
• Unification leads to the instantiation of variables to values.
• If any variables in the initial goal become instantiated this is

reported back to the user.

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 3

Correction: Re-trying Goals
• When a question is asked with a variable as an argument (e.g.

greet(Anybody).) we can ask the Prolog interpreter for multiple answers
using: ;

• ; fails the last clause used and searches down the program for another that
matches.

• It then performs all the tasks contained within the body of the new clause and
returns the new value of the variable.

greet(hamish):- write(‘How are you doin, pal?’).
greet(amelia):- write(‘Awfully nice to see you!’).

| ?- greet(Anybody).
How are you doin, pal?
Anybody = hamish? ;
Awfully nice to see you!
Anybody = amelia? ;
no

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 4

Tests
• When we ask Prolog a question we are asking for

the interpreter to prove that the statement is true.
?- 5 < 7, integer(bob).
yes = the statement can be proven.
no = the proof failed because either

– the statement does not hold, or
– the program is broken.

Error = there is a problem with the question or program.
nothing = the program is in an infinite loop.

• We can ask about:
– Properties of the database: mother(jane,alan).
– Built-in properties of individual objects: integer(bob).
– Absolute relationships between objects:

• Unification: =/2
• Arithmetic relationships: <, >, =<, >=, =:=, +, -, *, /

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 5

Arithmetic Operators
• Operators for arithmetic and value comparisons are

built-in to Prolog
= always accessible / don’t need to be written

• Comparisons: <, >, =<, >=, =:= (equals), =\= (not equals)
= Infix operators: go between two terms.
=</2 is used

• 5 =< 7. (infix)
• =<(5,7). (prefix) � all infix operators can also be prefixed

• Equality is different from unification
=/2 checks if two terms unify
=:=/2 compares the arithmetic value of two expressions

?- X=Y. ?- X=:=Y. ?-X=4,Y=3, X+2 =:= Y+3.
yes Instantiation error X=4, Y=3? yes

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 6

| ?- X is 5+4*2.
X = 13 ?
yes

Arithmetic Operators (2)
• Arithmetic Operators: +, -, *, /

= Infix operators but can also be used as prefix.
– Need to use is/2 to access result of the arithmetic

expression otherwise it is treated as a term:
|?- X = 5+4. |?- X is 5+4.
X = 5+4 ? X = 9 ?
yes yes

(Can X unify with 5+4?) (What is the result of 5+4?)

• Mathematical precedence is preserved: /, *, before +,-
• Can make compound sums using round brackets

– Impose new precedence
– Inner-most brackets first

| ?- X is (5+4)*2.
X = 18 ?
yes

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 7

Tests within clauses
• These operators can be used within the body of a

clause:
– To manipulate values,
sum(X,Y,Sum):-

Sum is X+Y.

– To distinguish between clauses of a predicate definition
bigger(N,M):-

N < M, write(‘The bigger number is ‘), write(M).
bigger(N,M):-

N > M, write(‘The bigger number is ‘), write(N).
bigger(N,M):-

N =:= M, write(‘Numbers are the same‘).

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 8

Backtracking
|?- bigger(5,4).

bigger(N,M):-
N < M,
write(‘The bigger number is ‘), write(M).

bigger(N,M):-
N > M,
write(‘The bigger number is ‘), write(N).

bigger(N,M):-
N =:= M,
write(‘Numbers are the same‘).

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 9

Backtracking
|?- bigger(5,4).

bigger(5,4):-
5 < 4, � fails
write(‘The bigger number is ‘), write(M).

bigger(N,M):-
N > M,
write(‘The bigger number is ‘), write(N).

bigger(N,M):-
N =:= M,
write(‘Numbers are the same‘).

Backtrack

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 10

Backtracking
|?- bigger(5,4).

bigger(N,M):-
N < M,
write(‘The bigger number is ‘), write(M).

bigger(5,4):-
5 > 4,
write(‘The bigger number is ‘), write(N).

bigger(N,M):-
N =:= M,
write(‘Numbers are the same‘).

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 11

|?- bigger(5,4).

bigger(N,M):-
N < M,
write(‘The bigger number is ‘), write(M).

bigger(5,4):-
5 > 4, � succeeds, go on with body.
write(‘The bigger number is ‘), write(5).

The bigger number is 5
yes
|?-

Backtracking

Reaches full-stop
= clause succeeds

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 12

Backtracking
|?- bigger(5,5). � If our query only matches the final clause

bigger(N,M):-
N < M,
write(‘The bigger number is ‘), write(M).

bigger(N,M):-
N > M,
write(‘The bigger number is ‘), write(N).

bigger(5,5):-
5 =:= 5,
write(‘Numbers are the same‘).

� Is already known as the first two clauses failed.

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 13

Backtracking
|?- bigger(5,5). � If our query only matches the final clause

bigger(N,M):-
N < M,
write(‘The bigger number is ‘), write(M).

bigger(N,M):-
N > M,
write(‘The bigger number is ‘), write(N).

bigger(5,5):-

write(‘Numbers are the same‘).

Numbers are the same
yes

� Satisfies the same conditions.

Clauses should be ordered according to specificity
Most specific at top Universally applicable at bottom

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 14

Reporting Answers
|?- bigger(5,4). � Question is asked
The bigger number is 5 � Answer is written to terminal
yes � Succeeds but answer is lost

• This is fine for checking what the code is doing but not for using
the proof.

|?- bigger(6,4), bigger(Answer,5).
Instantiation error!

• To report back answers we need to
– put an uninstantiated variable in the query,
– instantiate the answer to that variable when the query succeeds,
– pass the variable all the way back to the query.

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 15

Passing Back Answers
• To report back answers we need to

1. put an uninstantiated variable in the query,

| ?- bigger(6,4,Answer),bigger(Answer,5,New_answer).

2. instantiate the answer to that variable when the query
succeeds,

3. pass the variable all the way back to the query.

1

3 2
bigger(X,Y,Answer):- X>Y.
bigger(X,Y,Answer):- X=<Y.

, Answer = X.
, Answer = Y.

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 16

Head Unification
• To report back answers we need to

1. put an uninstantiated variable in the query,

| ?- bigger(6,4,Answer),bigger(Answer,5,New_answer).

Or, do steps 2 and 3 in one step by naming the variable in
the head of the clause the same as the correct answer.

= head unification

1

2
bigger(X,Y,X):- X>Y.
bigger(X,Y,Y):- X=<Y.

3

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 17

Satisfying Subgoals
• Most rules contain calls to other predicates in their

body. These are known as Subgoals.
• These subgoals can match:

– facts,
– other rules, or
– the same rule = a recursive call
1) drinks(alan,beer).
2) likes(alan,coffee).
3) likes(heather,coffee).

4) likes(Person,Drink):-
drinks(Person,Drink). � a different subgoal

5) likes(Person,Somebody):-
likes(Person,Drink), � recursive subgoals
likes(Somebody,Drink). �

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 18

Representing Proof using Trees
• To help us understand Prolog’s proof strategy we can

represent its behaviour using AND/OR trees.
1. Query is the top-most point (node) of the tree.
2. Tree grows downwards (looks more like roots!).
3. Each branch denotes a subgoal.

1. The branch is labelled with the number of the matching clause and
2. any variables instantiated when matching the clause head.

4. Each branch ends with either:
1. A successful match ,
2. A failed match , or
3. Another subgoal.

|?- likes(alan,X).

2 X/coffee

X = coffee

1st solution
= “Alan likes coffee.”

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 19

Representing Proof using Trees (2)

|?- likes(alan,X).

X/coffee
X = coffee

• Using the tree we can see what happens when we ask
for another match (;)

2
4

drinks(alan,X).

1 X/beer

X = beer
2nd solution

= “Alan likes beer because Alan drinks beer.”

1st match is failed
and forgotten

Backtracking

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 20

Recursion using Trees

|?- likes(alan,X).

X/coffee
X = coffee

• When a predicate calls itself within its body we say
the clause is recursing

2
4

1 X/beer

X = beer

5

likes(alan,Drink)

Conjoined subgoals

likes(Somebody,Drink)
drinks(alan,X).

X/coffee 2

X = coffee

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 21

|?- likes(alan,X).

X/coffee
X = coffee

2
4

1 X/beer

X = beer

3rd solution = “Alan likes Alan because Alan likes coffee.”

5

likes(alan,coffee)
likes(Somebody,coffee)

drinks(alan,X).

X/coffee 2

X = coffee

Somebody
/alan

2

Somebody = alan

Recursion using Trees (2)
• When a predicate calls itself within its body we say

the clause is recursing

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 22

|?- likes(alan,X).

X/coffee
X = coffee

2
4

1 X/beer

X = beer

4th solution =
“Alan likes Heather

because Heather likes coffee.”

5

likes(alan,coffee) likes(Somebody,coffee)
drinks(alan,X).

X/coffee 2

X = coffee

Somebody
/alan 2

Somebody
= alan

Somebody
/ heather3

Somebody
= heather

• When a predicate calls itself within its body we say
the clause is recursing

Recursion using Trees (3)

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 23

Infitite Recursive Loop
• If a recursive clause is called with an incorrect goal it will loop

as it can neither prove it
nor disprove it.

likes(Someb,coffee)

2Somebody
= alan

3

Somebody
= heather

5
likes(Someb,coffee)

Someb = alan
2 likes(coffee,coffee)

likes(coffee,X) likes(coffee,X)

likes(coffee,X2)

likes(coffee,X3)
likes(X,X2)

likes(X2,X3)

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 24

The central ideas of Prolog
• SUCCESS/FAILURE

– any computation can “succeed'' or “fail'', and this is used as
a ‘test‘ mechanism.

• MATCHING
– any two data items can be compared for similarity, and values

can be bound to variables in order to allow a match to
succeed.

• SEARCHING
– the whole activity of the Prolog system is to search through

various options to find a combination that succeeds.
• Main search tools are backtracking and recursion

• BACKTRACKING
– when the system fails during its search, it returns to previous

choices to see if making a different choice would allow
success.

