-RULUG

Tests, Backtracking, and
Recursion

Artificial Intelligence Programming in Prolog
Lecture 3
30/09/04

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking

e

a

-

!

DA D

Smm—

Re-cap

A Prolog program consists of predicate definitions.

A predicate denotes a property or relationship between objects.
Definitions consist of clauses.

A clause has a head and a body (Rule) or just a head (Fact).

A head consists of a predicate name and arguments.

A clause body consists of a conjunction of terms.

Terms can be constants, variables, or compound terms.

We can set our program goals by typing a command that unifies
with a clause head.

A goal unifies with clause heads in order (top down).
Unification leads to the instantiation of variables to values.

If any variables in the initial goal become instantiated this is
reported back to the user.

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 2

,1
“

Correction: Re-trying Goals

 When a question is asked with a variable as an argument (e.g.
greet (Anybody) .) we can ask the Prolog interpreter for multiple answers

using: ;
greet (hamish) :- write(‘How are you doin, pal?’).
greet (amelia) : - write(‘Awfully nice to see you!’).

| ?- greet (Anybody) .
How are you doin, pal?
Anybody = hamish? ;
Awfully nice to see you!
Anybody = amelia? ;

LU

no
3
‘ | - ; fails the last clause used and searches down the program for another that
] matches.
|t then performs all the tasks contained within the body of the new clause and
r‘] returns the new value of the variable.

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 3

Tests

 When we ask Prolog a question we are asking for
the interpreter to prove that the statement is true.
?—- 5 < 7, 1nteger (bob).
yes = the statement can be proven.

no = the proof failed because either

— the statement does not hold, or
— the program is broken.

Error = there is a problem with the question or program.
*nothing™ = the program is in an infinite loop.

UL UG

 We can ask about:
— Properties of the database: mother (jane, alan) .
— Built-in properties of individual objects: integer (bob) .
— Absolute relationships between objects:
 Unification: =/2
\ « Arithmetic relationships: <, >, =<, >=, ==+, - * /

)
!

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking

UL UG

!

DA D

Arithmetic Operators

» Operators for arithmetic and value comparisons are
built-in to Prolog

= always accessible / don’t need to be written

« Comparisons: <, >, =<, >=, =:= (equals), =\= (not equals)
= Infix operators: go between two terms.
=</2 Is used

e 5 =< 7. (infix)
« =< (5,7) . (prefix) « all infix operators can also be prefixed
« Equality is different from unification
=/2 checks if two terms unify

=:=/2 compares the arithmetic value of two expressions
?—- X=Y. ?— X=:=Y. ?-X=4,Y=3, X+2 =:= Y+3.

yes Instantiation error X=4, Y=3? yes

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 5

CD Arithmetic Operators (2)

* Arithmetic Operators: +, -, *, /
() = Infix operators but can also be used as prefix.
— Need to use is/2 to access result of the arithmetic
expression otherwise it is treated as a term:

i |?7- X = 5+4. |?2- X 1s 5+4.
X = 5+4 7 X =97

yes yes
‘ ’ (Can X unify with 5+47?) (What 1s the result of 5+47?)

« Mathematical precedence is preserved: /, *, before +,-

r’*(_‘ « Can make compound sums using round brackets
, — Impose new precedence | ?- X is (5+4)*2.
— Inner-most brackets first X =187

~

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 6

ULUG

!

DA D

Tests within clauses

These operators can be used within the body of a
clause:

— To manipulate values,
sum (X, Y, Sum) : -

Sum 1s X+Y.

— To distinguish between clauses of a predicate definition

bigger (N, M) : -
N < M, write(‘The bigger number is ‘), write(M).
bigger (N,M) : -
N > M, write(‘The bigger number is ‘), write(N).
bigger (N, M) : -

N =:= M, write(‘Numbers are the same?l).

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 7

,j
—

Backtracking
| ?- bigfer(5,4).

bigger (N,M) : -
N < M,
write (‘The bigger number is ‘), write (M).

bigger (N, M) : -
N > M,

write (‘The bigger number is ‘), write (N).
bigger (N, M) : -
N =:= M,

LU

write (\Numbers are the same?l).

)
R

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking

,j
-

Backtracking

| ?- bigfer(5,4).

bigger (5,4) : - \ Backtrack
5< 4, ¢

fails

write (‘'The bigger number 1s '), write(M).

bigger (N, M) : -
N > M,

write (‘The bigger number is ‘), write (N).
bigger (N, M) : -
N =:= M,

LU

write (\Numbers are the same?l).

)
!

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking

,j
-

Backtracking

| ?- bigger (5,4).

bigger (W, N) : -
N <| M}

v A 4
bigger (5,4) : -
5 > 4,

bigger (N, M) : -
N =:= M,

LU

write (‘\Numbers are the same?l).

)
Rl

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking

writef‘The bigger number is '), write(M).

write (‘The bigger number is ‘), write(N).

10

,j
-

Backtracking

| ?- bigger (5,4).

bigger (W, N) : -
N <| M}

writef‘The bigger number is ‘), write (M).
v v

bigger (5,4) : -

5 > 4, €< succeeds, go on with body.

write (‘The bigger number is ‘), write(5).

1

Reaches full-stop

yes = clause succeeds
| ?-

LU

The bigger number 1is 5

)
Rl

] 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 11

,j
-

Backtracking

| ?- bigger(5,5). < If our query only matches the final clause

bigger (W, N) : -
N <| M}

wrifel|(‘The bigger number is ‘), write (M).

bigger (W, N) : -

LU

N > M

wrigel|(‘The bigger number is ‘), write (N).
big&er(g,S):—

5 =:= 5, < Isalready known as the first two clauses failed.

write (‘\Numbers are the same?l).

)
Rl

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 12

,j
-

Backtracking

| ?- bigger(5,5). < If our query only matches the final clause

bigger (W, N) : -
N <| M}

wrikel(‘The bigger number 1is '), write(M).
bigger (W, N) : -
N > M

wrikel(‘The bigger number 1is '), write(N).

big&er(g,S):—

LU

& Satisfies the same conditions.
write (‘Numbers are the same').

Y
(—\‘ Numbers are the same
I yes
Clauses should be ordered according to specificity
r‘] Most specific at top «— Universally applicable at bottom

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 13

Reporting Answers

| ?- bigger (5, 4). < Question is asked
The bigger number is 5 < Answer is written to terminal
yes < Succeeds but answer is lost

« This is fine for checking what the code is doing but not for using
the proof.

s

| ?- bigger(6,4), bigger (Answer,5).

Instantiation error!

UL UG

 To report back answers we need to
— put an uninstantiated variable in the query,
— instantiate the answer to that variable when the query succeeds,

— pass the variable all the way back to the query.

)
!

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 14

Passing Back Answers

* To report back answers we need to
1. put an uninstantiated variable in the query,

ar U=

| ?- bigger(6,4,Answer),bigger (Answer,5,New answer) .

== Dy

bigger (X,Y,Answer) : - X>Y, Answer = X.
bigger (X, Y,Answer) : - X=<Y, Answer = Y.

ULUG

2. instantiate the answer to that variable when the query
succeeds,

3. pass the variable all the way back to the query.

)
!

] 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 15

Head Unification

* To report back answers we need to
1. put an uninstantiated variable in the query,

ar U=

| ?- bigger(6,4,Answer),bigger (Answer,5,New answer).

£

bigger (X,Y,X) := X>Y.
bigger (X,Y,Y) :— X=<Y.

ULUG

Or, do steps 2 and 3 in one step by naming the variable in
the head of the clause the same as the correct answer.

= head unification

\

!

DA D

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 16

@ Satisfying Subgoals

« Most rules contain calls to other predicates in their
(") body. These are known as Subgoals.
 These subgoals can match:
— facts,
' — other rules, or
— the same rule = a recursive call
(—-_-\' 1) drinks(alan,beer).
2) likes (alan,coffee).

3) likes (heather,coffee).

\ 4) likes (Person,Drink) :-
drinks (Person,Drink). <€ a different subgoal
| 5) likes (Person, Somebody) : -
likes (Person, Drink), <& recursive subgoals

r—\] likes (Somebody, Drink) . €

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 17

Representing Proof using Trees

* To help us understand Prolog’s proof strategy we can
represent its behaviour using AND/OR trees.

ae

1. Query is the top-most point (node) of the tree.
2. Tree grows downwards (looks more like roots!).

3. Each branch denotes a subgoal.
1. The branch is labelled with the number of the matching clause and
2. any variables instantiated when matching the clause head.
Each branch ends with either: |?- likes(alan,X).

1. A successful matchO :
2. A failed match(X), or

3. Another subgoal.

-

2/ Xl/coffee

I

1st solution
= “Alan likes coffee.”

DA D

] X = coffee

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 18

Representing Proof using Trees (2)

« Using the tree we can see what happens when we ask
for another match (;)

| ?— likes (alan, X).

ULUG

!

DA D

2 Backtracking
X/coffee 4
X= da‘fee
drinks(alan,X).
1st match is failed
and forgotten 1 | X/beer
X = beer
2nd solution

= “Alan likes beer because Alan drinks beer.”

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 19

Recursion using Trees

« When a predicate calls itself within its body we say
the clause is recursing

| ?— likes (alan, X).

Conjoined subgoals

X/coffee 4

X = coff
coriee drlnks alan X). likes(alan,Drink)

likes(Somebody,Drink)
eer X/coffee\ 2
X = beer

X = coffee

ULUG

)
B!

_)

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 20

Recursion using Trees (2)

« When a predicate calls itself within its body we say
the clause is recursing

| ?— likes (alan, X).

X/coffee

X = coff
Cconee drinks(alan,X). likes(alan,coffee)

likes(Somebody,coffee)
X/beer X/coffee
Somebody\ 2
X = beer falan

X = coffee

ULUG

Somebody = alan

3rd solution = “Alan likes Alan because Alan likes coffee.”

)
!

] 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 21

Recursion using Trees (3)

« When a predicate calls itself within its body we say

the clause is recursing
() | 7= likes (alan,X) .

X/coffee
X = coffee drinks(alan,X).

likes(alan,coffee) likes(Somebody,coffee)

1/ X/beer S bod
choffee\z Somebody PMeboay

“Alan likes Heather

. = alan
] because Heather likes coffee.”

e / heather
r\ (_4 X = beer o (5
X = coffee
| — Somebody
4th solution = Somebody = heather

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 22

ULUG

!

DA D

Infitite Recursive Loop

- If a recursive clause is called with an incorrect goal it will loop
as it can neither prove it
nor disproveit. el

Somebody

= alan ikes(Someb,coffee)

Somebody 2 / likes(coffee,coffee)
= heather Someb = alan

likes(coffee, X) Ilkes(coffee X)

“‘
o
.

likes(coffee, X2)
A likes(X,X2)
I k ff X \““"':::""'::"..
- eS(CO °e 3)||kes(>§g X3)

30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 23

The central ideas of Prolog

SUCCESS/FAILURE

— any computation can “succeed" or "fail", and this is used as
a ‘test’ mechanism.

MATCHING

— any two data items can be compared for similarity, and values
can be bound to variables in order to allow a match to
succeed.

SEARCHING

— the whole activity of the Prolog system is to search through
various options to find a combination that succeeds.

« Main search tools are backtracking and recursion

BACKTRACKING

— when the system fails during its search, it returns to previous
choices to see if making a different choice would allow
] success.

ULUG

)
Rl

| 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 24

