L

D Sentence Processing

‘ Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith
r\) Lecture 13
08/11/04
AL

| \l 08/11/04 AIPP Lecture 13: Sentence Processing

Contents

Tokenizing a sentence

Using a DCG to generate queries
« Morphological processing

* Implementing ELIZA

» pattern-matching vs. parsing

alielc

)
Rl

I 08/11/04 AIPP Lecture 13: Sentence Processing

UL UG

)
Rl

write/[1,2]

nl/[0,1]
tab/[1,2]

put/[1,2]
read/[1,2]
get/[1,2]

get0/[1,2]
see/1
seeing/1
seen/0
tell/1
telling/1
told/0
name/2

08/11/04

Recap I/O commands

write a term to the current output stream.
write a new line to the current output stream.

write a specified number of white spaces to the current
output stream.

write a specified ASCII character.
read a term from the current input stream.

read a printable ASCII character from the input stream
(i.e. skip over blank spaces).

read an ASCII character from the input stream

make a specified file the current input stream.

determine the current input stream.

close the current input stream and reset it to user.

make a specified file the current output stream.

determine the current output stream.

close the current output stream and reset it to user.

arg 1 (an atom) is made of the ASCII characters listed in arg 2

AIPP Lecture 13: Sentence Processing 3

Making a tokenizer

* You may remember that our DCGs take lists of words as input:
— sentence(['I',am,a,sentencel,[]).

This isn't a very intuitive way to interface with the DCG.

» |deally we would like to input sentences as strings and
automatically convert them into this form.

— a mechanism that does this is called a tokenizer (a token is
an instance of a sign).

 We introduced all the techniques neccessary to do this in the
last lecture.

- read/1 accepts Prolog terms (e.g. a string) from a user
prompt;

— get0/1 reads characters from the current input stream and
converts them into ASCII code;

O0L0E

— name/2 converts a Prolog term into a list of ASCII codes
] and vice versa.

)
!

I 08/11/04 AIPP Lecture 13: Sentence Processing 4

!

UL UG

DA D

Tokenizing user input

First, we need to turn our string into a list of ASCI| characters
using name/2.

| ?- read(X), name(X,L).
|: 'I am a sentence.'

L=[73,32,97,109,32,97,32,115,101,110,116,101,110,99,1
01,46],

yes

This can then be used to look for the syntax of the sentence
which identifies the word breaks.

A simple tokenizer might just look for the ASCII code for a space
(32).

More complex tokenizers should extract other syntax (e.g.
commas, 44) and list them as seperate words.

— syntax is important when it comes to writing a more general
DCG.

08/11/04 AIPP Lecture 13: Sentence Processing 5

Tokenizing user input (2)

* As we recurse through the list of ASCII codes we accumulate
the codes that correspond with the words.

Everytime we find a space we take the codes we have
accumulated and turn them back into words.

— we could accumulate characters as we recursed into the
program but this would reverse their order (think of
reverse/3)

tokenize ([H|T],SoFar,Out) ;-
H\==32, tokenize (T, [H|Sofar],Out).

— instead we can recurse within words, adding the characters
to the head of the clause and reconstructing the words as
we backtrack.

O0L0G

 We stop when we find the end of the sentence (e.g full-stop=
46) or we run out of characters.

)
Rl

08/11/04 AIPP Lecture 13: Sentence Processing 6

!

ULUG

DA D

An example tokenizer

go(Out):-

read(X), <read user input

name(X,L), < turn input into list of ASCII codes

tokenize(L,Out). < pass list to tokenizer
tokenize([],[]):-!. < base case: no codes left
tokenize(L,[Word|Out)):-

L\==(],

tokenize(L,Rest,WordChs), < identify first word
name(Word,WordChs), < turn codes into a Prolog term

tokenize(Rest,Out). < move onto rest of codes
tokenize([],[1,[]):- ! < end of word: no codes left
tokenize([46]_1,[1,[]):- ! < full-stop = end of word
tokenize([32|T],T,[]):- . < space = end of word

tokenize([H|T],Rest,[H|List]):- < if not the end of a word then add
tokenize(T,Rest,List). code to output list and recurse.

08/11/04 AIPP Lecture 13: Sentence Processing 7

,j
-

Example tokenisation

» |t will also accept compound
structures but only if quoted as

| ?- go(Out). | ?- go(Out).
("“‘ |]: 'I am a sentence.'. | :'I, can; contain: (syntax)'.
' Out = ['I',am,a,sentence] ? Out= ['I,','can;', 'contain:',
yes '(syntax) '] ?
yes
| ?- go(Out). | 2- go(Out) .
i |- honest. | : 'but not apostrophes (')'.
Out = [honest] ?
yes Prolog interruption (h for
() help)? a% Execution aborted
| ?- go(Out).

| : honest to_god.
Out = [honest to god] ?

strings.
(N
| ?- go(Out).
I |: '"[h,j,k,1] blue(dolphin)'.
Out = [‘[h,]j,k,1]',
'blue (dolphin) ']?
i

08/11/04 AIPP Lecture 13: Sentence Processing 8

Tokenizing file input

« We can also convert strings read from a file into
word lists.

Instead of processing a list of characters translated
from the user prompt we can read each ASCII code
direct from the file

— get0/1 reads characters direct from an input file and
converts them into ASCII code

« Every new call to get0/1 will read a new character so we
can use it to process the input file sequentially.

We could also use full-stops (code 46) to seperate out
sentences and generate mulitple sentences in one pass

O 0G

!

BAD

of the file.

I 08/11/04 AIPP Lecture 13: Sentence Processing 9

;e

a

)
R

From tokens to meaning

Now we have our word lists we can pass them to a DCG.

| want to be able to ask the query:
|: is 8 a member of [d4,9,qg,8].

and for it to construct and answer the query:
member (a, [d,9,g9,8]) .

First my program should ask for input

get _go(Out) : -
write ('Please input your query'), nl,
write('followed by a full stop.'), nl,
tokenize (0,0ut),
sentence (Query,Out, []), trace,

Query.

Then parse the word list using a DCG (sentence/3) and
Finally, call the resulting Query.

08/11/04 AIPP Lecture 13: Sentence Processing

10

ULUG

!

DA D

From tokens to meaning (2)

cover other questions).
— Word list = [is,8,a,member,of, [d,9,q,8]].

sentence (Query) --> [is], noun_phrase(X,),

This is the DCG for this question (it could easily be extended to

noun_phrase(Rel,Y), {Query =.. [Rel,X,Y]}.

noun_phrase (N,PP) --> det, noun(N), pp(PP).

noun phrase (PN,) --> proper noun (PN) .

pp (NP) --> prep, noun_phrase (NP,).

univ/2 operator
creates a predicate

prep --> [of].

det --> [a].

noun (member) --> [member].
proper noun (X) --> [X].

* Query = member(8,[d,9,qg,8]).

08/11/04 AIPP Lecture 13: Sentence Processing

11

UL UG

!

DA D

Morphology

Morphology refers to the patterns by which words are constructed from
units of meaning.

Most natural languages show a degree of regularity in their
morphology.

For example, in English most plurals are constructed by adding ‘s’ to
the singular noun
E.g. program - programs
lecture - lectures
These regular patterns allow us to write rules for performing
morphological processing on words.

If we represent our words as lists of ASCII codes then all we have to
do is append two lists together:

|- name(‘black’,L) ,name(‘'bird,L2),
append (L,L2,L3) ,name (Word, L3) .
L = [98,108,97,99], L2 = [98,105,114,100],
L3 = [98,108,97,99,98,105,114,100],
Word = blackbird;

08/11/04 AIPP Lecture 13: Sentence Processing 12

Pluralisation

 To pluralise a word all we have to do is append the

suffix ‘s’ to the word.
plural (Sing, Plu) : -

,j
—

name (Sing, SingChs) , | - plural (word,Plu).
name (s, PluChs), Plu = words;
append (SingChs,Suffix,PluChs), yes

name (Plu,PluChs) .

» As there are many different morphological transformations in
English (e.g. —ed, -ment, -ly) it would be useful to have a more
general procedure:

LU

generate morph (BaseForm,Suffix,DerivedForm) : -
name (BaseForm,BaseFormChs) ,
name (Suffix, SuffChs),
append (BaseFormChs , SuffChs ,DerFormChs) ,

I

]

] name (DerivedForm,DerFormChs) .

I 08/11/04 AIPP Lecture 13: Sentence Processing 13

"0 Pluralisation (2)

| ?- generate morph(word,s,Plu).
Plu = words

yes

| ?- generate morph(want,ed,Plu).
Plu = wanted

yes

| ?- generate morph(want,ed,Plu).

Plu = wanted

yes

 However, in English, there are many exceptions to the rule...

LU

| ?- generate morph(knife,s,Plu).
Plu = knifes - knives
yes

| ?- generate morph(create,ed,Plu).

Plu = createed - created

] yes

)
!

I 08/11/04 AIPP Lecture 13: Sentence Processing 14

;e

a

-

!

DA D

mE—

Accommodating Exceptions

* The simplest way to accommodate these exceptions is to
encode them explicitly in our rule.

 We can do this by replacing append/3 with a user-defined
predicate morph/3 that functions in the same way but also
catches exceptions.

< if word ends with the characters in
arg1 and suffix is arg2 replace arg1

morph (\\fell , IISII , Ilves//) .
morph (\\e// , //ed// , //ed//) .

with arg3.
morph ([],Suffix,Suffix). < if no exceptions just add suffix.
morph ([H|T],Suf, [H|Rest]) :- < normal recursive append clause;

morph (T, Suf,Rest) . build result in head.

« Remember that double-quotes have the same effect as name/2
| ?- name (‘word’ ,L). |?- L = “word”.
L = [119,111,114,100]; L = [119,111,114,100];

yes yes

08/11/04 AIPP Lecture 13: Sentence Processing 15

-

!

ULUG

DA D

E—

ELIZA

We have already seen how we can use our word lists and a
modified DCG to extract rudimentary meaning from sentences
but this is not the only way to make our program appear as if it
understands.

In 1966, Weizenbaum wrote a very rudimentary program that
used pattern-matching to process natural-language input and
choose appropriate responses.

He called his ‘chat-bot’ ELIZA and modelled her conversational
style on that of a Rogerian psychotherapist.

User: You are like my Father in some ways.
ELIZA: WHAT RESEMBLANCE DO YOU SEE?

User: You are not very aggressive but | think you don’t want me
to notice that.

ELIZA: WHAT MAKES YOU THINK | AM NOT AGGRESSIVE?
User: You don’t argue with me?
ELIZA: WHY DO YOU THINK THAT | DON'T ARGUE WITH YOU?

08/11/04 AIPP Lecture 13: Sentence Processing 16

UL UG

!

DA D

ELIZA (2)

The role of a Rogerian Psychotherapist is as a non-entity, they
should exhibit no persona or knowledge of the world.
Therefore, it is the perfect job for a computer.

All ELIZA needed to do was
— identify certain patterns of words,
— extract key elements of the input, and

— use these elements to construct output based on routine
sentence structures.

Pattern matching doesn’t require that we understand the
meaning of the sentence or even its structure. Therefore, we
don’t need to parse the sentence using a DCG.

All we need are lists of common sentences with variable ‘holes’
that can be matched to the input lists.

08/11/04 AIPP Lecture 13: Sentence Processing 17

,j
-

LU

)
!

Implementing ELIZA

* Input: “I think | am depressed.”

- Pattern: ['l', X,’I', am, Y]

» Output: [why,do,you,X,you,are,Y, ?’]

e = “Why do you think you are depressed?”

Knowledge base contains the fact:

rule([‘'I’', X, 'I’, am, Y], [why,do,you,X,you,are,Y,’'?’]).

| ?- go(Sent), rule(Sent,Resp), writelist (Resp).
|: ‘I think I am depressed’.
WHY DO YOU THINK YOU ARE DEPRESSED?

Resp = [why,do,you, think,you,are,depressed,’'?’'],

Sent = [‘I’, think, 'I’, am, depressed]
yes

08/11/04 AIPP Lecture 13: Sentence Processing

18

L

M Implementing ELIZA (2)

 The more rules you write the greater the range of sentences
ELIZA can identify.

rule([i,hate,X,'."'], [do,you,really,hate, X, ?]).

rule([do,you,Y, me,'?'], [why,do,you,ask,if,'I',¥Y,you,?]).
rule([i,1like,X,'.'], [does,anyone,else,in,your, family,like, X, ?])
rule([are,you,X,'?'], [what, makes,you, think,'I',am,X,6?]).

rule([you,are,X,'.'], [does,it,please,you,to,believe,'I"',am, X, ?]

* You also need a default response for when ELIZA doesn’t

recognise the sentence.
rule (X, [please,go,on,'."']).

LU

The patterns do not have to be complete. You might only need to
match the start of a sentence.

rule([i,think|Rest], [why,do,you,think|Rest]).

I

| : Why do you think people do not like me?
] WHY DO YOU THINK PEOPLE DO NOT LIKE ME? < Error: lack of agreement

DA D

I 08/11/04 AIPP Lecture 13: Sentence Processing 19

Post processing

 However, not all sentences can just be mirrored and
remain correct.

For example, pronouns must be reversed as
otherwise their referent will change:

User: “Do you like me?”
ELIZA: “Why do you ask if you like me?”

« We can do this be post-processing the output.

 If our rules preserve original pronouns then we can
filter the reply, replacing you for |, me for you, mine for

yours, etc.

replace([],[]).

replace ([‘you’ |T],['I’' |T2]) :-
replace(T,T2) .

‘ replace ([‘me’ |T], [‘you’ |T2]) : -

replace (T, T2) .
08/11/04 AIPP Lecture 13: Sentence Processing 20

-t _ *_ - — - _*_n. . ___ _f 0 __0_ _ __ ____ - __________ |l __ ____ || ____

O 0G

)
!

L

—

LU

1

DA D

Expanding ELIZA’s vocabulary

 We can also make our patterns into Prolog rules to allow
further processing.

 This allows us to either:

— accept more than one sentence as input for each pattern
— rule([Greeting|Rest], [hi|Rest]) :-

member (Greeting, [hi,hello,howdy,’'g day’]) .

* or generate more than one response to an input pattern.
- rule([Greeting|] ,Reply) :-
member (Greeting, [hi,hello,howdy,’'g day’]),
random_sel (Reply, [[hi], [how,are,you, today, ?],
[‘g day’], [greetings,and,salutations]]).

* Where random_sel/2 randomly selects a response from the
list of possibilities.

08/11/04 AIPP Lecture 13: Sentence Processing 21

Pattern matching vs. Parsing

* It looks as if pattern matching is easier to implement than writing
a DCG that could handle the same sentences, so why would we
use a DCG?

UL UG

!

)

Pattern-matching needs every
possible pattern to be explicitly
encoded. It is hard to re-use rules

Variations on these patterns have
to be explicitly accommodated.

Difficult to build logical
representations from constituents
without explicitly stating them.

However, for domains with a
limited range of user-input,
pattern matching can be sufficient
and surprisingly convincing.

Pattern-Matching | _

DCGs

A DCG identifies a sentence by
fitting it to a structure made up of
any range of sub-structures.

This allows it to identify a wide
range of sentences from only a
few rules.

To increase the vocabulary of the
DCG you only need to add
terminals not whole new rules.

As the DCG imposes a structure
on the sentence it can generate
a logical representation of the
meaning as a by-product.

08/11/04

AIPP Lecture 13: Sentence Processing 22

