
08/11/04 AIPP Lecture 13: Sentence Processing 1

Sentence Processing

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 13
08/11/04

08/11/04 AIPP Lecture 13: Sentence Processing 2

Contents
• Tokenizing a sentence
• Using a DCG to generate queries
• Morphological processing
• Implementing ELIZA
• pattern-matching vs. parsing

08/11/04 AIPP Lecture 13: Sentence Processing 3

Recap I/O commands
write/[1,2] write a term to the current output stream.
nl/[0,1] write a new line to the current output stream.
tab/[1,2] write a specified number of white spaces to the current

output stream.
put/[1,2] write a specified ASCII character.
read/[1,2] read a term from the current input stream.
get/[1,2] read a printable ASCII character from the input stream

(i.e. skip over blank spaces).
get0/[1,2] read an ASCII character from the input stream
see/1 make a specified file the current input stream.
seeing/1 determine the current input stream.
seen/0 close the current input stream and reset it to user.
tell/1 make a specified file the current output stream.
telling/1 determine the current output stream.
told/0 close the current output stream and reset it to user.
name/2 arg 1 (an atom) is made of the ASCII characters listed in arg 2

08/11/04 AIPP Lecture 13: Sentence Processing 4

Making a tokenizer
• You may remember that our DCGs take lists of words as input:

– sentence([’I’,am,a,sentence],[]).
• This isn‘t a very intuitive way to interface with the DCG.
• Ideally we would like to input sentences as strings and

automatically convert them into this form.
– a mechanism that does this is called a tokenizer (a token is

an instance of a sign).
• We introduced all the techniques neccessary to do this in the

last lecture.
– read/1 accepts Prolog terms (e.g. a string) from a user

prompt;
– get0/1 reads characters from the current input stream and

converts them into ASCII code;
– name/2 converts a Prolog term into a list of ASCII codes

and vice versa.

08/11/04 AIPP Lecture 13: Sentence Processing 5

Tokenizing user input
• First, we need to turn our string into a list of ASCII characters

using name/2.
|?- read(X), name(X,L).
|: 'I am a sentence.'
L=[73,32,97,109,32,97,32,115,101,110,116,101,110,99,1

01,46],
yes

• This can then be used to look for the syntax of the sentence
which identifies the word breaks.

• A simple tokenizer might just look for the ASCII code for a space
(32).

• More complex tokenizers should extract other syntax (e.g.
commas, 44) and list them as seperate words.
– syntax is important when it comes to writing a more general

DCG.

08/11/04 AIPP Lecture 13: Sentence Processing 6

Tokenizing user input (2)
• As we recurse through the list of ASCII codes we accumulate

the codes that correspond with the words.
• Everytime we find a space we take the codes we have

accumulated and turn them back into words.
– we could accumulate characters as we recursed into the

program but this would reverse their order (think of
reverse/3).
tokenize([H|T],SoFar,Out);-

H\==32, tokenize(T,[H|Sofar],Out).
– instead we can recurse within words, adding the characters

to the head of the clause and reconstructing the words as
we backtrack.

• We stop when we find the end of the sentence (e.g full-stop=
46) or we run out of characters.

08/11/04 AIPP Lecture 13: Sentence Processing 7

An example tokenizer
go(Out):-

read(X), �read user input
name(X,L), � turn input into list of ASCII codes
tokenize(L,Out). � pass list to tokenizer

tokenize([],[]):-!. � base case: no codes left
tokenize(L,[Word|Out]):-

L\==[],
tokenize(L,Rest,WordChs),� identify first word
name(Word,WordChs), � turn codes into a Prolog term
tokenize(Rest,Out). � move onto rest of codes

tokenize([],[],[]):- !. � end of word: no codes left
tokenize([46|_],[],[]):- !. � full-stop = end of word
tokenize([32|T],T,[]):- !. � space = end of word

tokenize([H|T],Rest,[H|List]):- � if not the end of a word then add
tokenize(T,Rest,List). code to output list and recurse.

08/11/04 AIPP Lecture 13: Sentence Processing 8

Example tokenisation
| ?- go(Out).
|: 'I am a sentence.'.
Out = ['I',am,a,sentence] ?
yes

| ?- go(Out).
|: honest.
Out = [honest] ?
yes

| ?- go(Out).
|: honest_to_god.
Out = [honest_to_god] ?
yes

| ?- go(Out).
|:'I, can; contain: (syntax)'.
Out= ['I,','can;', 'contain:',

'(syntax)'] ?
yes
| ?- go(Out).
|: 'but not apostrophes (')'.

Prolog interruption (h for
help)? a% Execution aborted

• It will also accept compound
structures but only if quoted as
strings.

| ?- go(Out).
|: '[h,j,k,l] blue(dolphin)'.
Out = [‘[h,j,k,l]’,

'blue(dolphin)']?
yes

08/11/04 AIPP Lecture 13: Sentence Processing 9

Tokenizing file input
• We can also convert strings read from a file into

word lists.
• Instead of processing a list of characters translated

from the user prompt we can read each ASCII code
direct from the file
– get0/1 reads characters direct from an input file and

converts them into ASCII code
• Every new call to get0/1 will read a new character so we

can use it to process the input file sequentially.
• We could also use full-stops (code 46) to seperate out

sentences and generate mulitple sentences in one pass
of the file.

08/11/04 AIPP Lecture 13: Sentence Processing 10

From tokens to meaning
• Now we have our word lists we can pass them to a DCG.
• I want to be able to ask the query:

|: is 8 a member of [d,9,g,8].
• and for it to construct and answer the query:

member(a,[d,9,g,8]).

• First my program should ask for input
get_go(Out):-

write('Please input your query'), nl,
write('followed by a full stop.'), nl,
tokenize(0,Out),
sentence(Query,Out,[]), trace,
Query.

• Then parse the word list using a DCG (sentence/3) and
• Finally, call the resulting Query.

08/11/04 AIPP Lecture 13: Sentence Processing 11

From tokens to meaning (2)
• This is the DCG for this question (it could easily be extended to

cover other questions).
– Word list = [is,8,a,member,of,[d,9,g,8]].

sentence(Query) --> [is], noun_phrase(X,_),
noun_phrase(Rel,Y), {Query =.. [Rel,X,Y]}.

noun_phrase(N,PP) --> det, noun(N), pp(PP).
noun_phrase(PN,_) --> proper_noun(PN).

pp(NP) --> prep, noun_phrase(NP,_).

prep --> [of].
det --> [a].
noun(member) --> [member].
proper_noun(X) --> [X].

• Query = member(8,[d,9,g,8]).

univ/2 operator
creates a predicate

08/11/04 AIPP Lecture 13: Sentence Processing 12

Morphology
• Morphology refers to the patterns by which words are constructed from

units of meaning.
• Most natural languages show a degree of regularity in their

morphology.
• For example, in English most plurals are constructed by adding ‘s’ to

the singular noun
E.g. program � programs

lecture � lectures
• These regular patterns allow us to write rules for performing

morphological processing on words.
• If we represent our words as lists of ASCII codes then all we have to

do is append two lists together:
|?- name(‘black’,L),name(‘bird,L2),

append(L,L2,L3),name(Word,L3).
L = [98,108,97,99], L2 = [98,105,114,100],
L3 = [98,108,97,99,98,105,114,100],
Word = blackbird;

08/11/04 AIPP Lecture 13: Sentence Processing 13

Pluralisation
• To pluralise a word all we have to do is append the

suffix ‘s’ to the word.
plural(Sing,Plu):-

name(Sing,SingChs), |?- plural(word,Plu).
name(s,PluChs), Plu = words;
append(SingChs,Suffix,PluChs), yes
name(Plu,PluChs).

• As there are many different morphological transformations in
English (e.g. –ed, -ment, -ly) it would be useful to have a more
general procedure:
generate_morph(BaseForm,Suffix,DerivedForm):-

name(BaseForm,BaseFormChs),
name(Suffix,SuffChs),
append(BaseFormChs,SuffChs,DerFormChs),
name(DerivedForm,DerFormChs).

08/11/04 AIPP Lecture 13: Sentence Processing 14

Pluralisation (2)
|?- generate_morph(word,s,Plu).
Plu = words
yes
|?- generate_morph(want,ed,Plu).
Plu = wanted
yes
|?- generate_morph(want,ed,Plu).
Plu = wanted
yes

• However, in English, there are many exceptions to the rule…
|?- generate_morph(knife,s,Plu).
Plu = knifes ���� knives
yes
|?- generate_morph(create,ed,Plu).
Plu = createed ���� created
yes

08/11/04 AIPP Lecture 13: Sentence Processing 15

Accommodating Exceptions
• The simplest way to accommodate these exceptions is to

encode them explicitly in our rule.
• We can do this by replacing append/3 with a user-defined

predicate morph/3 that functions in the same way but also
catches exceptions.
morph(“fe”,”s”,”ves”). � if word ends with the characters in
morph(“e”,”ed”,”ed”). arg1 and suffix is arg2 replace arg1

with arg3.
morph([],Suffix,Suffix). � if no exceptions just add suffix.
morph([H|T],Suf,[H|Rest]):- � normal recursive append clause;

morph(T,Suf,Rest). build result in head.

• Remember that double-quotes have the same effect as name/2
|?- name(‘word’,L). |?- L = “word”.
L = [119,111,114,100]; L = [119,111,114,100];
yes yes

08/11/04 AIPP Lecture 13: Sentence Processing 16

ELIZA
• We have already seen how we can use our word lists and a

modified DCG to extract rudimentary meaning from sentences
but this is not the only way to make our program appear as if it
understands.

• In 1966, Weizenbaum wrote a very rudimentary program that
used pattern-matching to process natural-language input and
choose appropriate responses.

• He called his ‘chat-bot’ ELIZA and modelled her conversational
style on that of a Rogerian psychotherapist.

User: You are like my Father in some ways.
ELIZA: WHAT RESEMBLANCE DO YOU SEE?
User: You are not very aggressive but I think you don’t want me
to notice that.
ELIZA: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE?
User: You don’t argue with me?
ELIZA: WHY DO YOU THINK THAT I DON’T ARGUE WITH YOU?

08/11/04 AIPP Lecture 13: Sentence Processing 17

ELIZA (2)
• The role of a Rogerian Psychotherapist is as a non-entity, they

should exhibit no persona or knowledge of the world.
Therefore, it is the perfect job for a computer.

• All ELIZA needed to do was
– identify certain patterns of words,
– extract key elements of the input, and
– use these elements to construct output based on routine

sentence structures.
• Pattern matching doesn’t require that we understand the

meaning of the sentence or even its structure. Therefore, we
don’t need to parse the sentence using a DCG.

• All we need are lists of common sentences with variable ‘holes’
that can be matched to the input lists.

08/11/04 AIPP Lecture 13: Sentence Processing 18

Implementing ELIZA
• Input: “I think I am depressed.”
• Pattern: [‘I’, X, ’I’, am, Y]
• Output: [why,do,you,X,you,are,Y,’?’]
• = “Why do you think you are depressed?”

Knowledge base contains the fact:
rule([‘I’, X, ’I’, am, Y], [why,do,you,X,you,are,Y,’?’]).

|?- go(Sent), rule(Sent,Resp), writelist(Resp).
|: ‘I think I am depressed’.
WHY DO YOU THINK YOU ARE DEPRESSED?

Resp = [why,do,you,think,you,are,depressed,’?’],
Sent = [‘I’, think, ’I’, am, depressed]
yes

08/11/04 AIPP Lecture 13: Sentence Processing 19

Implementing ELIZA (2)
• The more rules you write the greater the range of sentences

ELIZA can identify.
rule([i,hate,X,'.'], [do,you,really,hate,X,?]).
rule([do,you,Y,me,'?'], [why,do,you,ask,if,'I',Y,you,?]).
rule([i,like,X,'.'],[does,anyone,else,in,your,family,like,X,?])
rule([are,you,X,'?'],[what,makes,you,think,'I',am,X,?]).
rule([you,are,X,'.'],[does,it,please,you,to,believe,'I',am,X,?]

• You also need a default response for when ELIZA doesn’t
recognise the sentence.
rule(X,[please,go,on,'.']).

• The patterns do not have to be complete. You might only need to
match the start of a sentence.
rule([i,think|Rest], [why,do,you,think|Rest]).
|: Why do you think people do not like me?
WHY DO YOU THINK PEOPLE DO NOT LIKE ME? � Error: lack of agreement

08/11/04 AIPP Lecture 13: Sentence Processing 20

• However, not all sentences can just be mirrored and
remain correct.

• For example, pronouns must be reversed as
otherwise their referent will change:
User: “Do you like me?”
ELIZA: “Why do you ask if you like me?”

• We can do this be post-processing the output.
• If our rules preserve original pronouns then we can

filter the reply, replacing you for I, me for you, mine for
yours, etc.
replace([],[]).
replace([‘you’|T],[‘I’|T2]):-

replace(T,T2).
replace([‘me’|T],[‘you’|T2]):-

replace(T,T2).

This is especially useful when we are passing chunks

Post processing

08/11/04 AIPP Lecture 13: Sentence Processing 21

Expanding ELIZA’s vocabulary
• We can also make our patterns into Prolog rules to allow

further processing.
• This allows us to either:

– accept more than one sentence as input for each pattern
– rule([Greeting|Rest],[hi|Rest]):-

member(Greeting,[hi,hello,howdy,’g`day’]).

• or generate more than one response to an input pattern.
– rule([Greeting|_],Reply):-

member(Greeting,[hi,hello,howdy,’g`day’]),
random_sel(Reply,[[hi],[how,are,you,today,?],
[‘g`day’],[greetings,and,salutations]]).

• Where random_sel/2 randomly selects a response from the
list of possibilities.

08/11/04 AIPP Lecture 13: Sentence Processing 22

Pattern matching vs. Parsing

• Pattern-matching needs every
possible pattern to be explicitly
encoded. It is hard to re-use rules

• Variations on these patterns have
to be explicitly accommodated.

• Difficult to build logical
representations from constituents
without explicitly stating them.

• However, for domains with a
limited range of user-input,
pattern matching can be sufficient
and surprisingly convincing.

• A DCG identifies a sentence by
fitting it to a structure made up of
any range of sub-structures.

• This allows it to identify a wide
range of sentences from only a
few rules.

• To increase the vocabulary of the
DCG you only need to add
terminals not whole new rules.

• As the DCG imposes a structure
on the sentence it can generate
a logical representation of the
meaning as a by-product.

• It looks as if pattern matching is easier to implement than writing
a DCG that could handle the same sentences, so why would we
use a DCG?

Pattern-Matching DCGs

