
14/10/04 AIPP Lecture 7: The Cut 1

Controlling Backtracking:
The Cut

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 7
14/10/04



14/10/04 AIPP Lecture 7: The Cut 2

Clearing up equality
• There are various ways to test equality in Prolog.
X = Y succeeds if the terms X and Y unify.
X is Y succeeds if the arithmetic value of expression Y

matches the value of term X.
X =:= Y succeeds if the arithmetic value of two expressions

X and Y match.
X =\= Y succeeds if the arithmetic value of two expressions

X and Y DO NOT match.
X == Y succeeds if the two terms have literal equality = are

structurally identical and all their components have
the same name.

X \== Y succeeds if the two terms are NOT literally identical.
\+ Goal succeeds if Goal does not true



14/10/04 AIPP Lecture 7: The Cut 3

Clearing up equality (2)
| ?- 3+4 = 4+3.
no % treats them as terms
| ?- 3+4 = 3+4.
yes

| ?- X = 4+3.
X = 4+3 ?
yes
| ?- X is 4+3.
X = 7 ?
yes

| ?- 3+4 is 4+3.
no % left arg. has to be a term

| ?- 3+4 =:= 4+3.
yes % calculates both values
| ?- 3+4 =\= 4+3.
no

| ?- 3+4 == 4+3.
no
| ?- 3+4 \== 4+3.
yes
| ?- 3+X = 3+4.
X = 4 ? yes
| ?- 3+X == 3+4.
no

| ?- \+ 3+4 == 4+3.
yes



14/10/04 AIPP Lecture 7: The Cut 4

Processing in Prolog
To call the goal G:

1. Find first clause head that matches G:
1. bind all variables accordingly,
2. call goals in body in order;
3. if all succeed, G succeeds (and exits).

2. else try next clause down;
3. if no next clause, fail the goal G.

When a goal fails:
redo the most recent successful goal

To redo a goal:
1. discard bindings from previous success;
2. try clauses for this goal not so far tried;
3. if none, fail the goal.



14/10/04 AIPP Lecture 7: The Cut 5

Byrd Box model
• This is the model of execution used by the tracer.
• Originally suggested by Lawrence Byrd.

GOAL

Exception (error)

CALL

FAIL

EXIT

REDO



14/10/04 AIPP Lecture 7: The Cut 6

Redo-ing a Goal
fact(b,1).
fact(b,2).
a :- fact(b,N), fact(c,N).

|?- a.

fact(b,N)

CALL EXIT
N=1



14/10/04 AIPP Lecture 7: The Cut 7

Redo-ing a Goal (2)
fact(b,1).
fact(b,2).
a :- fact(b,N), fact(c,N).

|?- a.

fact(b,N)

CALL EXIT
N=1
REDO

fact(c,1)
CALL

FAIL



14/10/04 AIPP Lecture 7: The Cut 8

Redo-ing a Goal (3)
fact(b,1).
fact(b,2).
a :- fact(b,N), fact(c,N).

|?- a.

fact(b,N)

CALL

EXIT
N=1

REDO

EXIT
N=2



14/10/04 AIPP Lecture 7: The Cut 9

Redo-ing a Goal (4)
fact(b,1).
fact(b,2).
a :- fact(b,N), fact(c,N).

|?- a.
no.

fact(b,N)

CALL

EXIT
N=1

REDO

EXIT
N=2 fact(c,2)

CALL

FAILFAIL



14/10/04 AIPP Lecture 7: The Cut 10

Prolog’s Persistence
• When a sub-goal fails, Prolog will backtrack to the most recent

successful goal and try to find another match.
• Once there are no more matches for this sub-goal it will

backtrack again; retrying every sub-goal before failing the parent
goal.

• A call can match any clause head.
• A redo ignores old matches.

a:- b, c, d, e, f, g, h, I, j .
Succeed
Fail
Redo
Backtrack

a:- b, c, d, e, f, g, h, I, j .

A new instantiation

a:- b, c, d, e, f, g, h, I, j .



14/10/04 AIPP Lecture 7: The Cut 11

Cut !
• If we want to restrict backtracking we can control which

sub-goals can be redone using the cut = !.
• We use it as a goal within the body of clause.
• It succeeds when called, but fails the parent goal (the

goal that matched the head of the clause containing the cut) when an
attempt is made to redo it on backtracking.

• It commits to the choices made so far in the predicate.
– unlimited backtracking can occur before and after the cut but

no backtracking can go through it.

a:- b, c, d, e, !, f, g, h, I, j .a:- b, c, d, e, !, f, g, h, I, j .

immediate fail



14/10/04 AIPP Lecture 7: The Cut 12

Failing the parent goal

• The cut succeeds when it is called and commits the
system to all choices made between the time the parent
goal was invoked and the cut.

• This includes committing to the clause containing the cut.
= the goal can only succeed if this clause succeeds.

• When an attempt is made to backtrack through the cut
– the clause is immediately failed, and
– no alternative clauses are tried.

a:- b, c, d, e, !, f, g, h, I, j .
a:- k.
a:- m .

a:- b, c, d, e, !, f, g, h, I, j .
a:- k.
a:- m .

This clause and
these choices
committed to

Treated as if
don’t exist



14/10/04 AIPP Lecture 7: The Cut 13

Mutually Exclusive Clauses
• We should only use a cut if the clauses are mutually

exclusive (if one succeeds the others won’t).
• If the clauses are mutually exclusive then we don’t want

Prolog to try the other clauses when the first fails
= redundant processing.

• By including a cut in the body of a clause we are
committing to that clause.
– Placing a cut at the start of the body commits to the clause

as soon as head unification succeeds.
a(1,X):- !, b(X), c(X).

– Placing a cut somewhere within the body (even at the end)
states that we cannot commit to the clause until certain
sub-goals have been satisfied.
a(_,X):- b(X), c(X), !.



14/10/04 AIPP Lecture 7: The Cut 14

Mutually Exclusive Clauses (2)
f(X,0):- X < 3.
f(X,1):- 3 =< X, X < 6.
f(X,2):- 6 =< X.

|?- trace, f(2,N).
1 1 Call: f(2,_487) ?
2 2 Call: 2<3 ?
2 2 Exit: 2<3 ? ?
1 1 Exit: f(2,0) ?

N = 0 ? ;
1 1 Redo: f(2,0) ?
3 2 Call: 3=<2 ?
3 2 Fail: 3=<2 ?
4 2 Call: 6=<2 ?
4 2 Fail: 6=<2 ?
1 1 Fail: f(2,_487) ?

no



14/10/04 AIPP Lecture 7: The Cut 15

Green Cuts !
f(X,0):- X < 3, !.
f(X,1):- 3 =< X, X < 6, !.
f(X,2):- 6 =< X.

|?- trace, f(2,N).
1 1 Call: f(2,_487) ?
2 2 Call: 2<3 ?
2 2 Exit: 2<3 ? ?
1 1 Exit: f(2,0) ?

N = 0 ? ;
noIf you reach this point don’t

bother trying any other clause.
• Notice that the answer is still the same, with or without the cut.

– This is because the cut does not alter the logical behaviour of the
program.

– It only alters the procedural behaviour: specifying which goals get
checked when.

• This is called a green cut. It is the correct usage of a cut.
• Be careful to ensure that your clauses are actually mutually

exclusive when using green cuts!



14/10/04 AIPP Lecture 7: The Cut 16

• Because the clauses are mutually exclusive and ordered
we know that once the clause above fails certain
conditions must hold.

• We might want to make our code more efficient by
removing superfluous tests.

Red Cuts !
| ?- f(7,N).

1 1 Call: f(7,_475) ?
2 2 Call: 7<3 ?
2 2 Fail: 7<3 ?
3 2 Call: 3=<7 ?
3 2 Exit: 3=<7 ?
4 2 Call: 7<6 ?
4 2 Fail: 7<6 ?
5 2 Call: 6=<7 ?
5 2 Exit: 6=<7 ?
1 1 Exit: f(7,2) ?

N = 2 ?
yes

f(X,0):- X < 3, !.
f(X,1):- 3 =< X, X < 6, !.
f(X,2):- 6 =< X.

Redundant?



14/10/04 AIPP Lecture 7: The Cut 17

Red Cuts !
f(X,0):- X < 3, !.
f(X,1):- X < 6, !.
f(X,2).

| ?- f(7,N).
1 1 Call: f(7,_475) ?
2 2 Call: 7<3 ?
2 2 Fail: 7<3 ?
3 2 Call: 7<6 ?
3 2 Fail: 7<6 ?
1 1 Exit: f(7,2) ?

N = 2 ?
yes

f(X,0):- X < 3.
f(X,1):- X < 6.
f(X,2).

| ?- f(1,Y).
1 1 Call: f(1,_475) ?
2 2 Call: 1<3 ?
2 2 Exit: 1<3 ? ?
1 1 Exit: f(1,0) ?
Y = 0 ? ;
1 1 Redo: f(1,0) ?
3 2 Call: 1<6 ?
3 2 Exit: 1<6 ? ?
1 1 Exit: f(1,1) ?
Y = 1 ? ;
1 1 Redo: f(1,1) ?
1 1 Exit: f(1,2) ?
Y = 2 ?
yes



14/10/04 AIPP Lecture 7: The Cut 18

Using the cut
• Red cuts change the logical behaviour of a predicate.
• TRY NOT TO USE RED CUTS!
• Red cuts make your code hard to read and are dependent

on the specific ordering of clauses (which may change
once you start writing to the database).

• If you want to improve the efficiency of a program use
green cuts to control backtracking.

• Do not use cuts in place of tests.
To ensure a logic friendly cut either:
p(X):- test1(X), !, call1(X).
p(X):- test2(X), !, call2(X).
p(X):- testN(X), !, callN(X).

testI predicates are mutually exclusive.

p(1,X):- !, call1(X).
p(2,X):- !, call2(X).
p(3,X):- !, callN(X).

The mutually exclusive tests
are in the head of the clause.



14/10/04 AIPP Lecture 7: The Cut 19

• As well as specifying conditions under which a goal can
succeed sometimes we also want to specify when it
should fail.

• We can use the built-in predicate fail in combination
with a cut to achieve this: “ !, fail. “
= if you reach this point, fail regardless of other clauses.

• e.g. If we want to represent the fact that ‘Mary likes all
animals except snakes’.
likes(mary,X):-

snake(X), !, fail.

likes(mary,X):-
\+ snake(X),
animal(X).

Cut - fail

We need to combine a cut with
the fail to stop the redundant
call to the second clause on

backtracking.



14/10/04 AIPP Lecture 7: The Cut 20

Cut – fail: why?
• However, using a cut-fail can make your code hard to

follow.
• It is generally clearer and easier to define the conditions

under which a fact is true rather than when it is false.

likes(mary,X):-
\+ snake(X), This is sufficient to represent the fact.
animal(X).

• However, sometimes it can be much simpler to specify
when something is false rather than true so cut-fail can
make your code more efficient.

• As with all cuts; be careful how you use it.



14/10/04 AIPP Lecture 7: The Cut 21

Summary
• Clearing up equality: =, is, =:=, =\=, ==, \==, \+
• REDO vs. CALL
• Controlling backtracking: the cut !

– Efficiency: avoids needless REDO-ing which cannot
succeed.

– Simpler programs: conditions for choosing clauses can be
simpler.

– Robust predicates: definitions behave properly when forced
to REDO.

• Green cut = cut doesn’t change the predicate logic = good
• Red cut = without the cut the logic is different = bad
• Cut – fail: when it is easier to prove something is false than true.


