-RULUG

Controlling Backtracking:
The Cut

Artificial Intelligence Programming in Prolog
Lecturer: Tim Smith

Lecture 7
14/10/04

14/10/04 AIPP Lecture 7: The Cut

L

ﬂ Clearing up equality

« There are various ways to test equality in Prolog.
X =Y succeeds if the terms X and Y unify.

X is Y succeeds if the arithmetic value of expression Y
matches the value of term X.

succeeds if the arithmetic value of two expressions

X and Y match.

X =\=Y succeeds if the arithmetic value of two expressions
X and Y DO NOT match.

QL0

X ==Y succeeds if the two terms have literal equality = are

structurally identical and all their components have
the same name.

X \==Y succeeds if the two terms are NOT literally identical.

)
!

] \+ Goal succeeds if Goal does not true

I 14/10/04 AIPP Lecture 7: The Cut 2

I

L

LU

)
Rl

Clearing up equality (2)

| ?—- 3+4 = 4+43.
no % treats them as terms

| ?- 3+4 = 3+4.

yes
| ?- X = 4+43.
X = 443 7

yes

| ?- X 1is 4+3.
X =72

yes

| ?- 3+4 is 4+3.

no % left arg. has to be a term

14/10/04

| ?- 3+4 =:= 4+3.
ves % calculates both values
| ?2- 3+4 =\= 4+3.
no

| ?- 3+4 == 4+3.

no

| ?- 3+4 \== 4+3.
yes

| ?- 3+X = 3+4.

X =4 7 yes

| ?- 3+X == 3+4.

no

| 2= \+ 344 == 4+3.
yes

AIPP Lecture 7: The Cut

ULUG

I

))

Processing in Prolog

To call the goal G:

1. Find first clause head that matches G:
1. bind all variables accordingly,
2. call goals in body in order;
3. if all succeed, G succeeds (and exits).

2. else try next clause down;
3. if no next clause, fail the goal G.

When a goal fails:
redo the most recent successful goal

To redo a goal:

1. discard bindings from previous success;
2. try clauses for this goal not so far tried;
3. if none, fail the goal.

14/10/04 AIPP Lecture 7: The Cut

Byrd Box model

« This is the model of execution used by the tracer.
 Oiriginally suggested by Lawrence Byrd.

CALL EXIT

>

<
Exception (error)
<

PROLOG

14/10/04 AIPP Lecture 7: The Cut

C_J:) Redo-ing a Goal

fact(b,1).
(’ fact(b,2).
a :- fact(b,N), fact(c,N).

‘ | ?- a.

CALL EXTIT

‘ ————— > -
(—\(_J fact (b,N) e

B

14/10/04 AIPP Lecture 7: The Cut

@ Redo-ing a Goal (2)

fact(b,1).
(’ fact(b,2).
a :- fact(b,N), fact(c,N).

‘ | ?- a.

J AR
CALL CALL

| - lEx_IT:>| ~
(—\(_J N fact(c,1)

REDO FATL

e

14/10/04 AIPP Lecture 7: The Cut 7

C_J:) Redo-ing a Goal (3)

fact(b,1).
(’ fact(b,2).
a :- fact(b,N), fact(c,N).
‘ | ?- a.
(IT
N=1
CALL

EXIT

‘ ———— > -
(—\(_J fact (b,N) "

B

I 14/10/04 AIPP Lecture 7: The Cut

(;D Redo-ing a Goal (4)

fact(b,1).

(’ fact(b,2).
a :- fact(b,N), fact(c,N).
‘ |?- a.
no.
() BQTE
N=1
CALL
\ E— &
(—\(_J fact(c,2)
, FATL REDO _ FAIL
<

B

I 14/10/04 AIPP Lecture 7: The Cut 9

Prolog’'s Persistence

* When a sub-goal fails, Prolog will backtrack to the most recent
successful goal and try to find another match.

Once there are no more matches for this sub-goal it will
backtrack again; retrying every sub-goal before failing the parent
goal.

« A call can match any clause head. . .
_ A new instantiation
* A redo ignores old matches. N

ALY
S 2222222 AFTTTTTID

a-b,c,d, e f,ghlj. a-b,c,d, e f,g hlj.
=z A
a2 2 ¢
22
CHFTFTTT I

a-b,c,d, e f,ghlj.
] X Backtrack PSS

010G

[y 0P
Q -
- Q
— Q
)
)
Q.

VAR A

I 14/10/04 AIPP Lecture 7: The Cut 10

BER
¢

Cut !

 If we want to restrict backtracking we can control which
sub-goals can be redone using the cut = !.
We use it as a goal within the body of clause.

» It succeeds when called, but fails the parent goal (the

goal that matched the head of the clause containing the cut) when an
attempt is made to redo it on backtracking.

* |t commits to the choices made so far in the predicate.

— unlimited backtracking can occur before and after the cut but
no backtracking can go through it.

OLOG

\ immediate fail
-z S
r (A AT S 222222
' a:-b,c,d,e l,f,g,h I j. a-b,c,d e, fghlj.
r] T LA

I 14/10/04 AIPP Lecture 7: The Cut 11

CD Failing the parent goal

I | S 2 2 2 2
a-b,cd e l,fghlj. a-bcdelfghlj.

a:] Ei: . I | I. I I

e - these choices
a-m. don'texist =g~ . committed to

* The cut succeeds when it is called and commits the
system to all choices made between the time the parent

(goal was invoked and the cut.
This includes committing to the clause containing the cut.

= the goal can only succeed if this clause succeeds.

r" When an attempt is made to backtrack through the cut
, — the clause is immediately failed, and
— no alternative clauses are tried.

B

I 14/10/04 AIPP Lecture 7: The Cut 12

E_D Mutually Exclusive Clauses

« We should only use a cut if the clauses are mutually
exclusive (if one succeeds the others won't).

 If the clauses are mutually exclusive then we don’t want
Prolog to try the other clauses when the first fails

= redundant processing.

« By including a cut in the body of a clause we are
committing to that clause.
— Placing a cut at the start of the body commits to the clause
as soon as head unification succeeds.
a(l,X):- ', b(X), c(X).
— Placing a cut somewhere within the body (even at the end)
states that we cannot commit to the clause until certain

LU

sub-goals have been satisfied.
] a(_,X):- b(X), c(X), !.

)
Rl

14/10/04 AIPP Lecture 7: The Cut 13

C_D Mutually Exclusive Clauses (2)

| ?- trace, £(2,N).

Call: £(2, 487) ?
Call: 2<3 ?

Exit: 2<3 ? ?
Exit: £(2,0) ?

£(X,0):- X < 3.
£(X,1):- 3 =< X, X < 6.
£(X,2):- 6 =< X.

H NN R
H NN R

o .
. 14

Redo: £(2,0) ?

Call: 3=<2 ?
Fail: 3=<2 ?
Call: 6=<2 ?
Fail: 6=<2 ?
Fail: £(2, 487) 2

LU

B & h_ W WwRr
R DN NN DNDBR

no

)
Rl

I 14/10/04 AIPP Lecture 7: The Cut 14

Green Cuts

£(X,0):- X< 3, . | ?- trace, £(2,N).
1 1 call: £(2, 487) ?
£(X,1):- 3 =< X,|Xx< 6, !'. ,) o1l oea3
FX,2):m 6 =< %. 2 2 Exit: 2<3 ? ?
1 1 Exit: £(2,0) ?
\ N=07?;

If you reach this point don'’t no
bother trying any other clause.

* Notice that the answer is still the same, with or without the cut.

— This is because the cut does not alter the logical behaviour of the
program.

— It only alters the procedural behaviour: specifying which goals get
checked when.

« This is called a/green cut. It is the correct usage of a cut.

» Be careful to ensure that your clauses are actually mutually
] exclusive when using green cuts!

ULUG

I

DA D

I 14/10/04 AIPP Lecture 7: The Cut 15

,j
-

£(X,0):- X < 3, !.
£(X,1):- 3 =< X, X < 6,
f(x,2):—/6 =< X.

b

/

Redundant?

aima

conditions must hold.

)
!

Red Cuts !

I 14/10/04 AIPP Lecture 7: The Cut

| ?»- £(7,N).
1 1
2 2
2 2
3 2
3 2
4 2
4 2
5 2
5 2
1 1

N =

yes

Call:
Call:
Fail:
Call:
Exit:
Call:
Fail:
Call:
Exit:
Exit:

£(7,_475) 2
7<3 2

7<3 2

3=<7 ?

3=<7 ?

7<6 2

7<6 2

6=<7 ?

6=<7 ?
£(7,2) ?

« Because the clauses are mutually exclusive and ordered
we know that once the clause above fails certain

« We might want to make our code more efficient by
removing superfluous tests.

16

,j
-

Red Cuts !

£(X,0):- X < 3,

£(X,0):- X < 3.

(£f(X,1):- X< 6, !. £f(X,1):- X < 6.
f(X,2). f(X,2).
| ?2- £(7,N). | ?2- £(1,Y).
‘ 1 1 call: £(7,_475) ? 1 1 Call: £(1,_475) ?
2 2 Call: 7<3 ? 2 2 Call: 1<3 ?
2 2 Fail: 7<3 ° 2 2 Exit: 1<3 ? ?
3 2 Call: 7<6 ? 1 1 Exit: £(1,0) ?
‘ 3 2 Fail: 7<6 ? Y=02v?;
) 1 1 Exit: £(7,2) 2 1 1 Redo: £(1,0) 2
N =2 9 3 2 Call: 1<6 ?
3 2 Exit: 1<6 ? ?
* yes 1 1 Exit: £(1,1) ?
{—\ Y=120?2;
| 1 1 Redo: £(1,1) 2
1 1 Exit: £(1,2) 2
Y =272
3
I 14/10/04 AIPP Lecture 7: The Cut 17

UL UG

!

DA D

Using the cut

Red cuts change the logical behaviour of a predicate.
TRY NOT TO USE RED CUTS!

Red cuts make your code hard to read and are dependent
on the specific ordering of clauses (which may change
once you start writing to the database).

If you want to improve the efficiency of a program use
green cuts to control backtracking.

Do not use cuts in place of tests.

To ensure a logic friendly cut either:

p(X):— testl(X), !, calll(X). p(l,X):= !, calll (X).
p(X):— test2(X), !, call2(X). p(2,X):- !, call2(X).
p(X):— testN(X), !, callN(X). p(3,X):- !, callN(X).

testI predicates are mutually exclusive. The mutually exclusive tests

are in the head of the clause.

14/10/04 AIPP Lecture 7: The Cut 18

e

a

!

))

Cut - fall

As well as specifying conditions under which a goal can
succeed sometimes we also want to specify when it
should fail.

We can use the built-in predicate fail in combination
with a cut to achieve this: “ !, fail. ”

= if you reach this point, fail regardless of other clauses.

e.g. If we want to represent the fact that ‘Mary likes all
animals except snakes’.

likes (mary,X) : -
snake (X), !, fail. We need to combine a cut with

the fail to stop the redundant

call to the second clause on

\+ snake (X), backtracking.
animal (X) .

likes (mary,X) : -

14/10/04 AIPP Lecture 7: The Cut 19

ULUG

)
!

Cut — fail: why?

However, using a cut-fail can make your code hard to
follow.

It is generally clearer and easier to define the conditions
under which a fact is true rather than when it is false.

likes (mary,X) : -
\+ snake (X), This is sufficient to represent the fact.
animal (X) .

However, sometimes it can be much simpler to specify
when something is false rather than true so cut-fail can
make your code more efficient.

As with all cuts; be careful how you use it.

14/10/04 AIPP Lecture 7: The Cut 20

ULUG

I

DA D

Summary

Clearing up equality: =, is, =:=, =\=, ==, \==, \+
REDO vs. CALL
Controlling backtracking: the cut !

— Efficiency: avoids needless REDO-ing which cannot
succeed.

— Simpler programs: conditions for choosing clauses can be
simpler.

— Robust predicates: definitions behave properly when forced
to REDO.

Green cut = cut doesn’t change the predicate logic = good
Red cut = without the cut the logic is different = bad
Cut — fail: when it is easier to prove something is false than true.

14/10/04 AIPP Lecture 7: The Cut 21

