
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

AI Large Practical

Alan Smaill

School of Informatics

Sep 25 2013

Alan Smaill AI Large Practical Sep 25 2013 1/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

AILP: Assignment 1

The first assignment is now on-line on the course web page.

Today, we will look through what you are being asked to do as
part of this assignment.

As we saw last time, the general area is that of argumentation
systems, and we will build on an existing Haskell
implementation.

While the assessment here is on your submitted programs, it
will be a good idea to look at some of the associated
literature now in preparation for part 2, which will be assessed
primarily on a report of further extensions and experiments.

Alan Smaill AI Large Practical Sep 25 2013 2/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Starting point

One approach to argumentation is with the Carneades
framework, which by now has a fair sized literature;
this is specifically designed for legal argumentation, and
different standards of argument that are applied when
reaching legal judgements.

A bunch of material gathered together (look at sections 1–5):

http://www.sciencedirect.com/science/article/pii/
S0004370207000677

And on argumentation in general, some slides by Besnard and
Hunter are useful in giving a bigger picture:

http://www.ecsqaru.org/ECSQARU2007/elements.pdf

NB, they start from a more conventional logical approach.

Alan Smaill AI Large Practical Sep 25 2013 3/14

http://www.sciencedirect.com/science/article/pii/S0004370207000677
http://www.sciencedirect.com/science/article/pii/S0004370207000677
http://www.ecsqaru.org/ECSQARU2007/elements.pdf


T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Due dates

Reminder:

Assignment Issue Due Weight

A1 25 Sep Fri 25 Oct, 16:00 50%
A2 30 Oct Thu 12 Dec, 16:00 50%

Alan Smaill AI Large Practical Sep 25 2013 4/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Initial system and paper

There is an account of the initial system in this paper:

www.cs.nott.ac.uk/~bmv/Papers/tfp2012_abstract.pdf

It describes concisely the the implementation; the code is not long,
but does rely on some Haskell libraries.

Alan Smaill AI Large Practical Sep 25 2013 5/14

www.cs.nott.ac.uk/~bmv/Papers/tfp2012_abstract.pdf


T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Literate Haskell

The code is written in an extension of Haskell called literate
Haskell. This allows a smooth presentation of the code in the
paper mentioned above, and ensures that the code in the paper is
actually the code of the system.

It also allows automatic generation of documentation, via the
haddock tool:

http://www.haskell.org/haddock

. . . could be useful, though it is not essential to write your own
extensions in this way.

Alan Smaill AI Large Practical Sep 25 2013 6/14

http://www.haskell.org/haddock


T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Structuring system development

It is good to split any even medium sized development into
modules, and Haskell modules are well-suited to the task.

You may decide to split the original program – at any event it
is bad practice simply to add extra material in the body of
that code.

Better to work out what functionality the different modules
should provide, and how they fit together.

The gentle introduction:

http://www.haskell.org/tutorial/modules.html

Alan Smaill AI Large Practical Sep 25 2013 7/14

http://www.haskell.org/tutorial/modules.html


T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

The assigment: building a front-end

In the code as given, the module ExampleCAES.lhs constructs in
Haskell a particular argumentation configuration, and evaluates
some arguments in that context.

To use Carneades to investigate a series of problems, and to set up
experiments, we do not want to have to have a new module for
each example, nor to express the arguments and other data directly
in Haskell.

Thus the assigment asks you to develop a front-end to the system,
so that argumentation data can be given in text files, which
themselves can be used as input to the argumentation analysis
engine.

Alan Smaill AI Large Practical Sep 25 2013 8/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Arguments with exceptions

The basic notion of argument that is considered has the following
features:

Propositions are just atomic statements, possibly negated.
So they can be represented as strings, with a boolean flag.

An argumentation step (or just argument) consists of a set of
propositions as premisses, a further set of exceptions and a
single conclusion.

We read this as saying that if the premisses are all
extablished, and none of the exceptions can be extablished,
then the conclusion is justified.

Furthermore, a weight is associated with each argument.
(It is a good question to ask where these weights might come
from in a real-life situation.)

Alan Smaill AI Large Practical Sep 25 2013 9/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Assignment Part 1

You should consider an input language for argumentation data —
as it stands, the arguments are entered in the internal Haskell
syntax, which is clumsy for writers and readers.

For a particular context, there are three sorts of argumentation
data which the system makes use of:

1. Arguments, with weights

2. Assumptions

3. Standards of proof, associated with propositions under
consideration.

Alan Smaill AI Large Practical Sep 25 2013 10/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Assignment Part 1 ctd

For the example in ExampleCAES, these correspond to:

Arguments mkArg ["kill", "intent"] [] "murder"
mkArg ["witness"] ["unreliable"] "intent"
mkArg ["witness2"] ["unreliable2"] "-intent"

Assumptions mkAssumptions ["kill", "witness",
"witness2","unreliable2"]

Standard standard (_,"intent") =
beyond_reasonable_doubt

Note that:

the arguments are elsewhere associated with weights
they have (internal, Haskell) identifiers

the code for standard also has a default value

Alan Smaill AI Large Practical Sep 25 2013 11/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Part 1 ctd

Thus you should design an appropriate format for such a collection
of argumentation data.

Some choices:

A single file for each case, or separate files for arguments,
assumptions and standards?

A formal grammar description, or an informal
characterisation?

You will need to be able to parse your input data in order to
convert it to a form acceptable to the argumentation analysis
routines;
your choice of how to do this may affect your other choices here.

Alan Smaill AI Large Practical Sep 25 2013 12/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Testing

You should provide 3 test files with between 5 and 30 arguments,
and indicate (in comments) what your system returns on selected
queries.

It is also a good idea to include a README file in your directory;
this will make the tester’s life easier.

Alan Smaill AI Large Practical Sep 25 2013 13/14



T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Next week

Lecture at 9:00, same venue;

Initial problems, assessment information, more pointers.

Also drop-in sessions will start next week.

Alan Smaill AI Large Practical Sep 25 2013 14/14


