
AI Large Practical (2017–18)
Assignment 1

Alan Smaill

27th Sep, 2017

1 The assignment

Submissions for this assignment will receive comments when submitted,
but will not count towards the final mark for the AILP.

Assignment 1 involves an implementation of a system for representing
and evaluating arguments, where arguments are for or against a particular
claim, backed up by some supporting evidence.

During this assignment, you should

• look at some presentations of the general area of argumentation sys-
tems (there are some starting places on the course page);

• look at an initial implementation of such a system, and aim to get an
idea of how it works;

• Devise two argumentation scenarios. One may be similar to well-
known examples; the other should be your own idea, more extended
with say 20+ nodes. At least one should be in the legal domain.

• Give an explanation in English of the two examples, and

• run them interactively through the supplied Carneades system.

Later in the practical, you will be asked to work with similar examples.
Then there will be credit for

• novelty of the examples

• to what extent they test out the reasoning patterns; the system is
designed to represent.

You should write these scenarios yourself. You are not permitted to

1



• copy other students’ work;

• show your own work to other students;

but you are encouraged to have discussions with your colleagues.
Please see: http://www.inf.ed.ac.uk/teaching/plagiarism.html

2 Submission

Your are required to submit

• A description in English of the two argumentation scenarios, with
comments where appropriate;

• a record of an interactive session with Carneades showing how the
argumentation works in the system.

The simplest way to do this is to write doctest files, in the style of
caes doctest.py. The start of the caes.py file illustrates how to
interleave commentary with code invocations.

Please use the DICE submit command:

% submit ailp 1 <yourfile>

The deadline for Assignment-1 submission is

16:00 on Friday 13th October 2017.

3 Getting the original system

The following GitHub repository contains a Python implementation of the
Carneades argumentation system:
https://github.com/Smaill/carneades-1

API documentation (using the Sphinx documentation package) can be
found at
http://ewan-klein.github.io/carneades/

The implementation follows quite closely a Haskell implementation of the
Carneades argumentation system, and you may find it useful to consult
this:
http://www.cs.nott.ac.uk/˜psxbv/Papers/tfp2012_abstract.pdf

– it contains a useful worked example.

The recommended method of getting the code from GitHub is to use
git’s clone command. Here’s how it might look on a DICE machine:

2

http://www.inf.ed.ac.uk/teaching/plagiarism.html
https://github.com/Smaill/carneades-1
http://ewan-klein.github.io/carneades/
http://www.cs.nott.ac.uk/~psxbv/Papers/tfp2012_abstract.pdf


% git clone https://github.com/Smaill/carneades-1.git

Cloning into ’carneades-1’...

remote: Counting objects: 705, done.

remote: Total 705 (delta 0), reused 0 (delta 0), pack-reused 705

Receiving objects: 100% (705/705), 1.14 MiB | 1.56 MiB/s, done.

Resolving deltas: 100% (330/330), done.

If you want to clone into a different directory, say myproj, do this:

% git clone https://github.com/Smaill/carneades-1.git myproj

However, assuming, that you’ve cloned into the default directory, carneades,
you can cd into the Python package directory and try running the code.
You’ll need to use Python 3; the code has been developed with Python 3.4.
If you have a peek at the caes.pymodule, youll see that the start of the file
contains lines like this:

""

First, lets create some propositions using the :class:PropLiteral

constructor. All propositions are atomic, that is, either positive

or negative literals.

>>> kill = PropLiteral(kill)

>>> kill.polarity

True

>>> intent = PropLiteral(intent)

>>> murder = PropLiteral(murder)

>>> witness1 = PropLiteral(witness1)

>>> unreliable1 = PropLiteral(unreliable1)

>>> witness2 = PropLiteral(witness2)

>>> unreliable2 = PropLiteral(unreliable2)

...

This is a long ’docstring’; lines starting with>>> represent interactive Python
commands. The doctest module can be used to execute them. This is a way
to test the behaviour of the code, and to provide illustrative calls for docu-
mentation purposes. Towards the bottom of the bottom of this docstring,
you will see how to initialise a Carneades Argument Evaluation Structure
(CAES) and create the various components of a CAES. The caes.pymodule
had logging set to DEBUG level, but you can easily comment this out at the
top of the file if you want. The module also does some recursive call tracing
so that you can get a better idea of what steps are involved in evaluating an
argument in a CAES.

% cd carneades/src/caes

3



% python3.4 caes.py

DEBUG: Added proposition murder to graph

DEBUG: Added proposition -murder to graph

DEBUG: Added proposition intent to graph

DEBUG: Added proposition kill to graph

DEBUG: Proposition intent is already in graph

DEBUG: Added proposition -intent to graph

DEBUG: Added proposition witness1 to graph

DEBUG: Added proposition unreliable1 to graph

DEBUG: Proposition -intent is already in graph

DEBUG: Proposition intent is already in graph

DEBUG: Added proposition witness2 to graph

DEBUG: Added proposition unreliable2 to graph

Calling applicable([witness1], [unreliable1] => intent)

DEBUG: Checking applicability of arg2...

...

The caes.py module includes code to generate argumentation graphs
using igraph . A Python 3.4 compatible version of igraph has been installed
on DICE. However, the plotting capability of igraph depends on Python
bindings for the Cairo library, and these are not currently available on DICE.

To generate graphs on your own Linux machine, look at advice from an
earlier student.

4

http://igraph.org
http://cairographics.org
https://github.com/goweiting/carneades/blob/master/README.md
https://github.com/goweiting/carneades/blob/master/README.md

	The assignment
	Submission
	Getting the original system

