
AI Large Practical (2016–17)
Assignment 2

Alan Smaill

5 October, 2016

1 The assignment

Assignment 2 is about an implementation of a system for representing
and evaluating arguments, where arguments are for or against a particular
claim, backed up by some supporting evidence. In this part of the course,
you should

• look at some of the AI literature on argumentation systems in general
(there are some starting places on the course page);

• look at an initial implementation of such a system in Python, and aim
to get an idea of how it works;

• extend the system in the ways mentioned below;

• provide 3 test examples, as described below;

• finally submit your extended version of the system, suitably com-
mented with reasons for your design choices.

You should write programs and comments by yourself. You are not
permitted to

• copy code which someone else wrote for submission to this assign-
ment;

• show your own programs to other students.

Outside these restrictions, you are encouraged to have discussions with
your colleagues about concepts, techniques and tools. For more informa-
tion, please consult the School’s plagiarism policy.

1

http://www.inf.ed.ac.uk/teaching/plagiarism.html


2 Submission

For this assignment, you are required to submit:

• program source code, ensuring

– you make your code as readable as possible;
– provide appropriate docstrings for classes and methods;
– where appropriate, provide additional comments to help the

reader understand the intention behind the code.

You should include running examples, and documentation, such as a
readme file, which enables a user to run your system on your examples
with minimal fuss.

1

% submit ailp 2 <zip-file-of-your-project-directory>

The deadline for Assignment 2 submission is 16:00 on Friday 11th
November 2016.

3 Task Specification

The following GitHub repository contains a Python implementation of the
Carneades argumentation system:
https://github.com/ewan-klein/carneades

API documentation (using the Sphinx documentation package) can be
found at
http://ewan-klein.github.io/carneades/

The implementation follows quite closely a Haskell implementation of the
Carneades argumentation system, and you may find it useful to consult
this:
http://www.cs.nott.ac.uk/˜psxbv/Papers/tfp2012_abstract.pdf

– this contains a useful worked example.

The recommended method of getting the code from GitHub is to use
git’s clone command. Here’s how it might look on a DICE machine:

% git clone https://github.com/ewan-klein/carneades.git

Initialized empty Git repository in .../ewan/carneades/.git/

remote: Counting objects: 407, done.

remote: Compressing objects: 100% (282/282), done.

remote: Total 407 (delta 131), reused 0 (delta 0)

Receiving objects: 100% (407/407), 740.90 KiB | 416 KiB/s, done.

Resolving deltas: 100% (176/176), done.

1% here is for the DICE terminal prompt; yours will probably look different.

2

https://github.com/ewan-klein/carneades
http://ewan-klein.github.io/carneades/
http://www.cs.nott.ac.uk/~psxbv/Papers/tfp2012_abstract.pdf


If you want to clone into a different directory, say myproj, do this:

% git clone https://github.com/ewan-klein/carneades.git myproj

However, assuming, that you’ve cloned into the default directory, carneades,
you can cd into the Python package directory and try running the code.
You’ll need to use Python 3; the code has been developed with Python 3.4.
If you have a peek at the caes.pymodule, youll see that the start of the file
contains lines like this:

""

First, lets create some propositions using the :class:PropLiteral

constructor. All propositions are atomic, that is, either positive

or negative literals.

>>> kill = PropLiteral(kill)

>>> kill.polarity

True

>>> intent = PropLiteral(intent)

>>> murder = PropLiteral(murder)

>>> witness1 = PropLiteral(witness1)

>>> unreliable1 = PropLiteral(unreliable1)

>>> witness2 = PropLiteral(witness2)

>>> unreliable2 = PropLiteral(unreliable2)

...

This is a long ’docstring’; lines starting with>>> represent interactive Python
commands. The doctest module can be used to execute them. This is a way
to test the behaviour of the code, and to provide illustrative calls for docu-
mentation purposes. Towards the bottom of the bottom of this docstring,
you will see how to initialise a Carneades Argument Evaluation Structure
(CAES) and create the various components of a CAES. The caes.pymodule
had logging set to DEBUG level, but you can easily comment this out at the
top of the file if you want. The module also does some recursive call tracing
so that you can get a better idea of what steps are involved in evaluating an
argument in a CAES.

% cd carneades/src/caes

% python3.4 caes.py

DEBUG: Added proposition murder to graph

DEBUG: Added proposition -murder to graph

DEBUG: Added proposition intent to graph

DEBUG: Added proposition kill to graph

DEBUG: Proposition intent is already in graph

DEBUG: Added proposition -intent to graph

DEBUG: Added proposition witness1 to graph

DEBUG: Added proposition unreliable1 to graph

3



DEBUG: Proposition -intent is already in graph

DEBUG: Proposition intent is already in graph

DEBUG: Added proposition witness2 to graph

DEBUG: Added proposition unreliable2 to graph

Calling applicable([witness1], [unreliable1] => intent)

DEBUG: Checking applicability of arg2...

...

The caes.pymodule depends on igraph . A Python 3.4 compatible version
of igraph has been installed on DICE. However, the plotting capability of
igraph depends on Python bindings for the Cairo library, and these are not
currently available on DICE.

4 The extension

4.1 Implementing a file-reading capability

As mentioned above, the sample code in the main caes.py docstring il-
lustrates how to initialise a CAES. The goal of this task is to carry out the
same function by reading in a file, rather than issuing separate Python
commands.

For example, assume that you have created a text file calledcaesfile.txt,
and you have extended caes.py with a new class Reader. Then we would
like a Reader instance to have something like a load()method which would
take a file object as an argument.

>>> caes_data = open(’caesfile.txt’)

>>> reader = Reader(...) # supply any init parameters

>>> reader.load(case_data)

In order for the load()method to work, you will have to figure out an
appropriate input syntax, and combine this with code for reading informa-
tion expressed with this syntax from a file and converting into the Python
data structures provided by caes.py.

4.2 Devising a syntax

You should work out an appropriate syntax that allows information about

• propositions (both positive and negative),

• arguments,

• audience assumptions and weights, and

• and proof standards associated with particular propositions

4

http://igraph.org
http://cairographics.org


to be stated in a single text file.
Although there will be trade-offs, your priority should be to make life

easy for the user who wants to write down the above information; that
is, dont make the syntax of the input file awkward just to ease your job of
writing the deserialisation code. You should also ensure that your input files
allow the user to add comments if desired; that is, you should implement a
comment syntax that your reader is able to understand.

4.3 Deserialisation

You will need to write Python deserialisation code that converts text strings
into the Carneades data structures proposed by caes.py. This will be
the core of your Reader class— although you are not required to wrap
your file-reading functions into a class, it will probably be a good way
of keeping things tidy. You are welcome to use existing Python libraries
where appropriate, and of course it is good practice not to re-invent the
wheel. Your deserialisation code should not only lead to the initialisation
of a CAES instance but also carry out error checking on the input file, and
give useful error messages if the input is ill-formed.

The code caes.py is provided to you as a starting point. You may
decide that some of the design decisions in that implementation could be
improved. You are free to modify the API as long as the caes.py runs at
least as well as it currently does. You should also include comments that
document and justify your design decisions.

4.4 Examples

Finally:

• provide three text files containing at least 5 arguments each;

• choose example arguments that ’make sense’ from a legal point of
view;

• ensure that these files can be read and processed; and

• provide regression tests which show what the expected output will
be. You can use any Python testing framework you like (e.g., doctest,
unittest, nose).

5 Assessment

You submitted system will be tested, following your README instructions;
the following aspects will be taken into consideration:

• design of the input syntax

5



• content of test files are they coherent sets of arguments?

• whether the results are reasonable, including error checking on valid-
ity of input

• clarity of your code (including appropriate comments and explana-
tions)

• justification of design decisions (in the form of docstrings or other
comments)

You will be expected to build on this system for the second part of the
assignment.

A rough guide on marking:

• To pass: a running program, able to read in at least some of the
required inputs.

• For an A, require results to be OK, and comments, structuring and
explanation as requested.

Efficiency is not a primary concern here; but extra credit is available for
efficiency and good style.

References

6


	The assignment
	Submission
	Task Specification
	The extension
	Implementing a file-reading capability
	Devising a syntax
	Deserialisation
	Examples

	Assessment

