AI2 Module 4
Tutorial 5
Alan Bundy
and
Jürgen Zimmer ${ }^{1}$
School of Informatics

1 Partial Order Planning and Register Swap

Consider the simple register swap problem in which we have a register with three cells: 1,2 , and 3 , and data items \mathbf{A} and \mathbf{B} :

The above situation can be described with: Contains(1,A) \wedge Contains(2,B) \wedge Contains(3,_), where _ denotes the empty cell.
The only action available is copying a data item from cell i to another cell j : $\operatorname{Copy}(i, j)$. The original content of cell j is overwritten by this action.
(a) Represent the action Copy (i, j) as a STRIPS operator.
(b) Consider the the partial order planning algorithm introduced in lecture. Describe, on an abstract level, how the planner would proceed to find a plan for swapping the contents of cell 1 and cell 2 in the above example, i.e. to achieve the goal Contains $(\mathbf{1}, \mathbf{B}) \wedge$ Contains (2,A), until the first threats occur. Also describe how the threats can be resolved. The initial plan is:

[^0]
2 The Event Calculus in the Wumpus World

Let us assume that there are two agents, b and c in the Wumpus World. Furthermore, actions in the Wumpus World are now continuous and we use $T(a, i)$ to indicate that the event of performing the action a occurs over exactly the interval i. In the following, $\operatorname{Move}\left(x, s q_{1}, s q_{2}\right)$ is the action of agent x moving from square $s q_{1}$ to square $s q_{2}$ and $\operatorname{Stay}(x, s q)$ is the passive action of agent x staying at square $s q$. Thus, $T\left(\operatorname{Move}\left(x, s q_{1}, s q_{2}\right), i\right)$ means that the event of agent x moving from square $s q_{1}$ to square $s q_{2}$ occurs over exactly the interval i.
Assume that the initial location of agent b is the square $s q_{b}$ and the initial location of agent c is $s q_{c}$. Formalise the following statement in the event calculus:

If Agent b and agent c both move from their initial square to a square $s q$, then they always wait long enough to meet, i.e. there is some time interval in which they are both present at square $s q$.

3 Modal Logics and World Politics

Try to formalise the following quotation of Donald Rumsfeld as a modal logic formula. Represent "we know φ " as $\mathrm{K}_{w e} \varphi$.

> As we know,
> There are known knowns.
> There are things we know we know.
> We also know
> There are known unknowns.
> That is to say
> We know there are some things
> We do not know.
> But there are also unknown unknowns.
> The ones we don't know we don't know.
(The Guardian, Saturday May 3, 2003, p. 13)
[Hint: You will need to quantify over propostitions, e.g. $\exists \varphi$]

[^0]: ${ }^{1}$ In case of any question, do not hesitate to contact jzimmer@mathweb.org.

