AI2 Module 4
Tutorial 3
Alan Bundy
and
Jürgen Zimmer ${ }^{1}$
School of Informatics

1 Logical Agents: Extending the expressive Power

In the lecture we showed that FOL already gives a more succinct representation of the Wumpus World than propositional logic. We also introduced an even more succinct representation by representing squares as pairs $\langle i, j\rangle$, introducing the binary adjacency predicate $\operatorname{Adj}(p, q)$, and by avoiding disjunctions in rules, e.g., $\forall p . S(p) \Leftrightarrow \exists q \cdot \operatorname{Adj}(p, q) \wedge W(q)$.

1.1 Definition for Predicates

Complete the following definition for the predicates. Put your definitions in clause normal form. You may use the predicate $=$ which represents equality:
a) $\forall i . \forall j . \forall q . \operatorname{Adj}(\langle i, j\rangle, q) \Leftrightarrow \ldots$
b) $\forall p . B(p) \Leftrightarrow \ldots$

1.2 Interrogating a FOL KB

We showed how the query $\operatorname{Ask}(K B, O K(3,1))$ can be answered using resolution. In the following we assume that any arithmetic evaluation is built-in. Try to complete the following inference to refute $O K(3,1)$ based on the representation introduced above. Fill in the gaps.

[^0]| (0) | $\Rightarrow O K(\langle 3,1\rangle)$ | |
| :---: | :---: | :---: |
| (1) | $W(\langle i, j\rangle) \wedge O K(\langle i, j\rangle) \Rightarrow$ | |
| (2) | $S(p) \Rightarrow \operatorname{Adj}(p, a(p))$ | |
| (3) | $\Rightarrow S(\langle 2,1\rangle)$ | |
| (4) | $S(p) \Rightarrow W(a(p))$ | |
| (5) | $\operatorname{Adj}(\langle i, j\rangle, q) \Rightarrow \ldots$ | Diagnostic rule fro |
| (6) | $\begin{aligned} & \left(x=y_{1} \vee x=y_{2} \vee x=y_{3} \vee x=y_{4}\right) \wedge W(x) \\ & \Rightarrow\left(W\left(y_{1}\right) \vee W\left(y_{2}\right) \vee W\left(y_{3}\right) \vee W\left(y_{4}\right)\right) \end{aligned}$ | |
| (7) | $W(\langle 1,1\rangle) \Rightarrow$ | |
| (8) | $W(\langle 2,0\rangle) \Rightarrow$ | |
| (9) | $W(\langle 2,2\rangle) \Rightarrow$ | |
| (10) | \cdots | by (2) \& (3) |
| (11) | $\begin{aligned} \Rightarrow & (a(\langle 2,1\rangle)=\langle 1,1\rangle \vee a(\langle 2,1\rangle)=\langle 3,1\rangle \vee \\ & a(\langle 2,1\rangle)=\langle 2,2\rangle \vee a(\langle 2,1\rangle)=\langle 2,0\rangle) \end{aligned}$ | by (5) \& (10) |
| (12) | \ldots | by (3) \& (4) |
| (13) | $\Rightarrow W(\langle 1,1\rangle) \vee W(\langle 3,1\rangle) \vee W(\langle 2,2\rangle) \vee W(\langle 2,0\rangle)$ | by (6),(11)\&(12) |
| (14) | \ldots | by (7)-(9) \& (13) |
| (15) | \Rightarrow | by (14), (1) \& (0) |

2 The Situation Calculus and the Wumpus World

We discussed the frame problem and showed how it can be fixed by adding frame axioms. Use the following predicates and functions:

- $A t(s q, s)$ means that the agent is at square $s q$ in situation s.
- Heading (dir, s) means that the agent is facing in direction dir in situation s.
- $N e x t(s q 1, d i r, s q 2)$ means that square $s q 2$ is adjacent to square $s q 1$ in direction dir.
- Result (act,s) is the situation resulting from executing the action act in situation s.
- Turn (x) is the action of turning x where $x \in\{l e f t$, right $\}$.
- Newdir (dir $1, x, \operatorname{dir} 2)$ means that $\operatorname{dir} 2$ is the new direction the agent will face if it is facing in direction $\operatorname{dir} 1$ and turns $x \in\{l e f t$, right $\}$.
- Wumpus $(s q, s)$ means that that the Wumpus is in square $s q$ in situation s.

In the following we assume that the action Shoot only has an effect in directly adjacent squares.
a) Formalise an effect axiom for the Wumpus World that best describes the action $\operatorname{Turn}(x)$.
b) Formalise an effect axiom that best describes the Shoot action in the Wumpus World.
c) Formalise a frame axiom that best describes the Shoot action in the Wumpus World.

[^0]: ${ }^{1}$ In case of any question, do not hesitate to contact jzimmer@mathweb.org.

