AI2 Module 4 Tutorial 1: Notes on Solutions Alan Bundy School of Informatics

This tutorial is revision of material taught in modules 1 and 2. If you are struggling then read chaps 7 and 8 of Russell & Norvig 2nd edition (chaps 6 and 7 in 1st edition), esp $\S7.3-4$ and $\S8.1-3$ ($\S6.3-4$ and $\S7.1-3$ 1st edition).

- 1. No answer to this required.
- 2. $S_{1,1} \Leftrightarrow W_{1,2} \lor W_{2,1}$, where $S_{i,j}$ means there is a stench in square (i, j) and $W_{i,j}$ means there is a Wumpus in square (i, j).
- 3. The truth table is:

OK	W	P	$\neg W$	$\neg P$	$\neg W \land \neg P$	$OK \Leftrightarrow (\neg W \land \neg P)$
0	0	0	1	1	1	0
0	0	1	1	0	0	1
0	1	0	0	1	0	1
0	1	1	0	0	0	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	0	1	0	0
1	1	1	0	0	0	0

The formula is true when OK is false and one of W or P is true, or when OK is true and both W and P are false.

- 4. $\forall p, t. At(p, t) \land G(p) \land Pickup(p, t) \Rightarrow HasGold(t+1)$ where At(p, t) means the agent is at square p at time t, G(p) means there is a glitter in square p, Pickup(p, t) means the agent picks-up in square p at time t, HasGold(t) means the agent has the gold at time t and t+1 is the successor time to t. Any reasonable variations of predicate/function name, representation of successor time and argument dependency is acceptable. However, note that §6.2 should tell them that G is independent of time.
- 5. This yields three clauses:

$$\begin{array}{rcl} Adj(p,q) \wedge P(q) & \Rightarrow & B(p) \\ & B(p) & \Rightarrow & Adj(p,a(p)) \\ & B(p) & \Rightarrow & P(a(p)) \end{array}$$

by the following process:

Note that the $\exists q$ cannot be skolemized until the \Leftrightarrow is removed, and that it then yields a Skolem function, a(p), in one conjunct and a free variable, q, in the other.

6. The derivation is:

Resolve (4) and (5) :	(6) $Adj(p, \langle 2, 2 \rangle) \Rightarrow S(p)$
Resolve (1) and (6) :	$(7) Adj(<1,2>,<2,2>) \Rightarrow$
Resolve (2) and (7) :	$(8) \Rightarrow$