AI2 Module 4
Tutorial 1: Notes on Solutions
Alan Bundy
School of Informatics

This tutorial is revision of material taught in modules 1 and 2 . If you are struggling then read chaps 7 and 8 of Russell \& Norvig 2nd edition (chaps 6 and 7 in 1st edition), esp §7.3-4 and $\S 8.1-3$ ($\S 6.3-4$ and $\S 7.1-3$ 1st edition).

1. No answer to this required.
2. $S_{1,1} \Leftrightarrow W_{1,2} \vee W_{2,1}$, where $S_{i, j}$ means there is a stench in square (i, j) and $W_{i, j}$ means there is a Wumpus in square (i, j).
3. The truth table is:

$O K$	W	P	$\neg W$	$\neg P$	$\neg W \wedge \neg P$	$O K \Leftrightarrow(\neg W \wedge \neg P)$
0	0	0	1	1	1	0
0	0	1	1	0	0	1
0	1	0	0	1	0	1
0	1	1	0	0	0	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	0	1	0	0
1	1	1	0	0	0	0

The formula is true when $O K$ is false and one of W or P is true, or when $O K$ is true and both W and P are false.
4. $\forall p, t$. $\operatorname{At}(p, t) \wedge G(p) \wedge \operatorname{Pickup}(p, t) \Rightarrow \operatorname{HasGold}(t+1)$ where $\operatorname{At}(p, t)$ means the agent is at square p at time $t, G(p)$ means there is a glitter in square p, $\operatorname{Pickup}(p, t)$ means the agent picks-up in square p at time $t, \operatorname{HasGold}(t)$ means the agent has the gold at time t and $t+1$ is the successor time to t. Any reasonable variations of predicate/function name, representation of successor time and argument dependency is acceptable. However, note that $\S 6.2$ should tell them that G is independent of time.
5. This yields three clauses:

$$
\begin{aligned}
\operatorname{Adj}(p, q) \wedge P(q) & \Rightarrow B(p) \\
B(p) & \Rightarrow \operatorname{Adj}(p, a(p)) \\
B(p) & \Rightarrow P(a(p))
\end{aligned}
$$

by the following process:
Skolemize $p: \quad B(p) \Leftrightarrow \exists q . \operatorname{Adj}(p, q) \wedge P(q)$
Remove $\Leftrightarrow: \quad(B(p) \Rightarrow \exists q \cdot \operatorname{Adj}(p, q) \wedge P(q)) \wedge(\exists q . \operatorname{Adj}(p, q) \wedge P(q)) \Rightarrow B(p))$
Skolemize $q: \quad(B(p) \Rightarrow \operatorname{Adj}(p, a(p)) \wedge P(a(p))) \wedge(\operatorname{Adj}(p, q) \wedge P(q)) \Rightarrow B(p))$
Split into clauses: $\quad \operatorname{Adj}(p, q) \wedge P(q) \Rightarrow B(p)$
$B(p) \Rightarrow \operatorname{Adj}(p, a(p))$
$B(p) \Rightarrow P(a(p))$

Note that the $\exists q$ cannot be skolemized until the \Leftrightarrow is removed, and that it then yields a Skolem function, $a(p)$, in one conjunct and a free variable, q, in the other.
6. The derivation is:
Resolve (4) and (5):
(6) $\operatorname{Adj}(p,<2,2>) \Rightarrow S(p)$
Resolve (1) and (6):
(7) $\operatorname{Adj}(<1,2>,<2,2>) \Rightarrow$
Resolve (2) and (7):
(8) \Rightarrow

