
1

Further Issues in Planning

Alan Bundy

School of Informatics

(slides courtesy of Robert Wilensky)

Robust Execution of Plans
� Plans are typically executed in a dynamic

environment.
� It may be more congenial than we

planned for,
� e.g a cooperative agent may have achieved some subgoals

already.

� It may be more uncongenial than we
planned for,

� e.g. a hostile agent may undo some achieved goals.

Triangle Tables

Goto(m,n)At(Robot,m)

Push(k,n,o)At(Robot,n)
At(k,n)

Box(k)

At(Robot,n)

At(k,o)

0

1

2

0 1 2

The row to the left of an operator are its preconditions.
The column below an operator are its effects.

Execution of Triangle Tables
� Always start from the end and work back.
� If environment congenial may omit some

steps.
� If environment uncongenial may need to

repeat some steps.
� Need to constantly monitor environment to

update world model.
� Keep triangle tables as macro operators to

insert in new plans.

Example of Omitting Steps
� Suppose plan for At(Box1,C) is formed in

expectation that robot and box are in
different places: At(Robot,A), At(Box1,B)

� But, in practice, box is in same place as
robot: At(Robot,A), At(Box1,A)

� So plan executed is: Push(Box1,A,C).

� Rather than: Goto(A,B), Push(Box1,B,C).

Example of Repeating Steps
� Suppose plan for At(Box1,C) is formed in

expectation that box is in one place:
At(Box1,B).

� Whereas it is actually at another place:
At(Box1,D)

� So plan executed is: Goto(A,B), Goto(B,D),

Push(Box1,D,C).

� Rather than: Goto(A,B), Push(Box1,B,C).

2

Another General Problem That
Arises In Planning

� Can we really list all the preconditions for an
action?

� E.g., we forgot to mention that Move requires that
� The block not be nailed down.
� The block not be glued to the table.
� There not be a force field holding a block in place.

� This is (part of) the 'Qualification Problem'.

The Qualification Problem
� A Solution: State conditions at right level of generality; inherit (or

otherwise reason about) them.
� E.g., state that to move a block, it must not be attached.

� State that gluing, nailing, etc., are ways of attaching.

� But we still have to check a lot of preconditions!
� Solution: Have some theory of when a precondition is worth checking;

prove only that the plan will work given the assumptions.
� E.g., plan to turn on light by flipping switch has lots of preconditions,

most of which we never check.

Toward Subtler Preconditions:
An Example

� We'll introduce one simple distinction,
� between preconditions worth attempting to

achieve and those never worth attempting.

� Just this simple change will make our
planner enormously faster.

� Of course, more subtle distinctions
might be even nicer.

Subtler Preconditions: A
Motivating Example

� Consider some plausible operators for
stacking blocks.

� Might need several operators, because they
have different effects and preconditions:

� One for each of
� moving a block fromon top of a block to on top of

another block
� Moving a block fromon top of the table to on top of

a block.
� moving a block fromon top of a block to on top of

the table.

Preconditions: Block World
Example

� ReStack(obj,from,to); stack a block that is on a block
Pre: On(obj,from) ∧∧∧∧ Clear(obj) ∧∧∧∧ Clear(to) ∧∧∧∧ Block(obj) ∧∧∧∧ Block(from)

∧ ∧ ∧ ∧ Block(to)
Add: On(obj,to) ∧∧∧∧ Clear(from)
Del: On(obj,from) ∧ ∧ ∧ ∧ Clear(to)

� Stack-from-table(obj,from,to); stack a block that is on the table
Pre: On(obj,from) ∧∧∧∧ Clear(obj) ∧∧∧∧ Clear(to) ∧∧∧∧ Block(obj) ∧ ∧ ∧ ∧ Table(from)

∧ ∧ ∧ ∧ Block(to)
Add: On(obj,to)
Del: On(obj,from) ∧∧∧∧ Clear(to)

� Un-Stack(obj,from,to); move a block from on top a block to the table
Pre: On(obj,from) ∧∧∧∧ Clear(obj) ∧∧∧∧ Block(obj) ∧ ∧ ∧ ∧ Table(to) ∧ ∧ ∧ ∧ Block(from)
Add: On(obj,to) ∧∧∧∧ Clear(from)
Del: On(obj,from)

Now Look What Happens
� Suppose goal is On(A,B) where

Block(A) Block(B) Block(C) Table(Table1)
On(B,Table1) On(C,Table1) On(A,C)

� What operator does the planner choose?
� Intuitively, ReStack is the only choice.
� However, all the operators seem helpful!

� I.e., along with ReStack, both Stack-from-table and Un-Stack have
On(obj,to) on their Add lists.

� Might end up with plans such as
� Stack-from-table A onto B, having first done Un-Stack A onto Table1.
� Stack-from-table A onto B, having first turned C into a table!

� In fact, the planner will consider a huge number of silly plans,
most of which die a natural death; some make bad plans;
increases possibility of loops in our search.

Table1

B C

A

3

Solutions

� Distinguish those precondition literals that
are useful to consider changing from those
that simply need to be true.

� Call the latter 'filter conditions'.
� E.g., ReStack(obj,from,to)

Filter: On(obj,from) ∧∧∧∧ Block(from) ∧∧∧∧ Block(to) ∧∧∧∧ Block(obj)
Pre:Clear(obj) ∧∧∧∧ Clear(to)
Add: On(obj,to) ∧∧∧∧ Clear(from)
Del:On(obj,from) ∧∧∧∧ Clear(to)

� Here we divided preconditions into
� 'Filter', i.e., literals not worth trying to change
� 'Pre', i.e., literals that get turned into subgoals if not true, as before.

How Much Does This Help?
� In our planner, without filter conditions, the

M&B problem takes about 1 hour to solve
� on a 1 gigahertz PC.
� It used 2,713,146,715 cons cells.
� And it produces a plan with a silly step in it.

� With filter conditions, it is too fast to time.
� It used 10,100 cons cells.
� And produced a fine plan.

(Why is the difference so great?)

Operator Selection
� This is part of 'operator selection'.
� In general, might have conditions that

aren't preconditions here.
� In general, might know complex conditions

under which various operators should be
considered.

� E.g., if my goal is 'satisfy hunger', I consider
different actions at different times of the day, where
I am, etc.

� If so, might need to do less planning and more
remembering.

Operator Selection and
Knowledge

� One might learn these associations from experience.
� E.g., if turning something into a table always fails, make it a

'Filter' rather than a 'Pre'.

� Maintain 'plan library' of previous plans.
� Have ways of generalizing actual plans to be applicable to

something other than the exact situation they were created
for.

� Have ways of indexing them so they are considered at the
right time. E.g., store plans that were expensive to compute.

� How to generalize from experience is an interesting
problem!

Yet Another Problem

� Can we really list all the results of an
action?

� E.g., if we move a block, its shadow will move too.
� This is the 'Ramification Problem'.
� With respect to planning, this is the 'plan projection problem'.

� As with preconditions, we don't want to list
all the effects with each operator, but
instead, have separate, general facts that
allow us to make inferences.

� E.g., if light source, then shadow attached to object.
� Moving just changes location of object moved.
� We reason by inference that shadow is moved too.

Ramifications and Planning

� Note that not listing a ramification of
an action complicates operator
selection.

� Before, we just looked for an operator whose ADD list
unifies with a subgoal.

� Now, we would need to consider operators whose ADD
list, plus other things, entailsa subgoal.

� Moreover, if we add ramifications to a
KB via inference, interesting problems
arise.

4

Ramification Example
� Suppose we knew

Married(Dennis,Carmen)
Brother(Mario,Carmen)
Brother-in-law(Dennis,Mario)

� Now suppose there is a Divorce operator, which,
among other things, removes
Married(Dennis,Carmen)

� But now Brother-in-law(Dennis,Mario)
becomes false too.

� Just as a Marriage operator couldn’ t list all the
states to add, a Divorce operator couldn’ t
explicitly list all the operators to remove.

Solution
� Maintain 'data dependencies'

� In effect, keep history of how things got
in the KB.

� When a conclusion is no longer justified,
withdraw the conclusion.

Data Dependency
Representation Example

Married(Dennis,Carmen)

Brother(Mario,Carmen) Brother-in-law(Dennis,Mario)

Married(x,y) ∧∧∧∧ Brother(z,y) → → → → Brother-in-law(x,z)

���������� �������	
��

�������	
��
�

���
�����
����������������
���
���������������	
��
��

Complication
� Can have more than one justification

for the same belief.
� Only remove a belief if all its

justifications are no longer valid,
� properly handling circular justifications.

Data Dependencies

J1

• ���
�����
�����������
��J3 � �������
���
���J1
��
�
• �
��
�������
���Belief1 � ����J1
���J2
����
��
�����
�
����

J2Belief1

J3 Belief2

Data Dependencies

J1

• J4 ���	��	��
��������������
������� �����	
������	����
�������

�
�����
� ����
���������
� ��
�����
��������� ��
��
���
���
�����J1
���J3 �
���!�����
���
���Belief2�"

• #��
���
�����J3 �
���!�����
���
���J1�
• $������
���
�����J3
���J2 �
����
������
�����������	
��
��
���	��	��
��

J2Belief1

J4
J3 Belief2

5

Truth Maintenance
� A system that maintains dependencies between sentences is

called a truth maintenance system.
� Generally, a TMS doesn’t actually remove something from a

KB; instead, it marks statements as being 'in' or 'out'.
� This way, it is relatively easy to recompute implications when assumptions

change.

� What we have described is a justification-based TMS.
� SomeTMSskeep track not of which justifications support

which propositions, but which sets of assumptions support
which propositions.

� This 'assumption-based truth maintenance system' (ATMS) is a finer-grain level
of support, which, in effect, maintains at the same time all thesituations that
have ever been considered.

� Maintaining data dependencies is expensive (NP-hard).
People don’ t do this well either.

Truth Maintenance and
Planning

� Whether we need a TMS for planning is
related to the nature of how we determine
the full consequences of operators.

� If we allow operators to have effects via
deduction, then we need a TMS to reason
about the changes from one situation to
another.

� This is hard, but should be.

Summary

• We can get more robust plan execution by storing them in
triangle tables.

� We can improve the performance of STRIPS further by
having a more refined idea of preconditions.

� Or being smart about operator selection generally.

� Reasoning about results can still be tricky.
� Maintaining data dependencies can help.

