Further Issuesin Planning

Alan Bundy
School of I nformatics
(slides courtesy of Robert Wilensky)

Robust Execution of Plans

Plans are typically executed in adynamic
environment.

It may be more congenia than we
planned for,

€.g a cooperative agent may have achieved some subgoals
already.

It may be more uncongenial than we
planned for,

e.g. a hostile agent may undo some achieved goals.

Triangle Tables
0 | At(Robot,m) Goto(m,n)
1 | Ak At(Robot,n) | Push(k,n,0)
Box(k)
At(Robot,n)
2
At(k,0)
0 1 2

Therow to the left of an operator are its preconditions.
The column below an operator are its effects.

Execution of Triangle Tables

Always start from the end and work back.
If environment congenial may omit some
steps.

If environment uncongenial may need to
repeat some steps.

Need to constantly monitor environment to
update world model.

Keep triangle tables as macro operators to
insert in new plans.

Example of Omitting Steps

Suppose plan for aAtBoxi,c) isformed in
expectation that robot and box arein
different places. At(Robot,A), At(Box1,B)

But, in practice, box isin same place as
robot: At(Robot,A), At(Box1,A)

So plan executed is: Push(Box1,A,C).
Rather than: coto(a,B), Push(Box1,8,C).

Example of Repeating Steps

Suppose plan for AtBoxi,c) isformed in
expectation that box isin one place:
At(Box1,B).

Whereasit is actually at another place:
At(Box1,D)

So plan executed is: Goto(A,B), Goto(B,D),
Push(Box1,D,C).

Rather than: coto(a,B), Push(Box1,8,C).

Another Genera Problem That
Arises In Planning

Can weredlly list all the preconditions for an
action?
E.g., we forgot to mention that Move requires that
The block not be nailed down.
The block not be glued to the table.
There not be aforce field holding a block in place.
Thisis (part of) the 'Qualification Problem'’.

The Qualification Problem

A Solution: State conditions at right level of generality; inherit (or
otherwise reason about) them.

E.g., satethat to move ablock, it must not be attached.
State that gluing, nailing, etc., are ways of attaching.
But we till have to check alot of preconditions!
Solution: Have some theory of when a precondition is worth checking;
prove only that the plan will work given the assumptions.

E.g., plan to turn on light by flipping switch has lots of preconditions,
most of which we never check.

Toward Subtler Preconditions;
An Example

Well introduce one simple distinction,

between preconditions worth attempting to
achieve and those never worth attempting.

Just this simple change will make our
planner enormously faster.

Of course, more subtle distinctions
might be even nicer.

Subtler Preconditions; A
Motivating Example

Consider some plausible operators for
stacking blocks.

Might need severa operators, because they
have different effects and preconditions:
Onefor each of

moving a block from on top of ablock to on top of
another block

Moving a block fromon top of the table to on top of
ablock.

moving a block from on top of ablock to on top of
thetable.

Preconditions: Block World
Example

ReStack(obj,from,to); stack ablock that is on ablock

Pre: On(obj,from) O Clear(obj) O Clear(to) OBlock(obj) OBlock(from)
OBlock(to)

Add: On(obj,to) OClear(from)

Del: On(obj,from) O Clear(to)

Stack-from-table(obj,from,to); stack ablock that is on the table

Pre: On(obj,from) O Clear(obj) OClear(to) OBlock(obj) OTable(from)
OBlock(to)

Add: On(obj,to)

Del: On(obj,from) O Clear(to)

Un-Stack(obj,from,to); move ablock from on top a block to the table
Pre: On(obj,from) O Clear(obj) OBlock(obj) O Table(to) OBlock(from)
Add: On(obj,to) OClear(from)

Del: On(obj,from)

Now L ook What Happens

Suppose goal is On(A,B) where E
Block(A) Block(B) Block(C) Table(Tablel)
On(B,Tablel) On(C,Tablel) On(A,C)
What operator does the planner choose?
Intuitively, ReStack isthe only choice.
However, all the operators seem helpful!

l.e, along with ReStack, both Stack-from-table and Un-Stack have
On(obj,to) ontheir Add lists.

Might end up with plans such as
Stack-from-table A onto B, having first done Un-Stack A onto Tablel.
Stack-from-table A onto B, having first turned C into atable!
In fact, the planner will consider a huge number of silly plans,
most of which die a natural death; some make bad plans;
increases possihbility of loopsin our search.

[o]>]

Solutions

Distinguish those precondition literals that
are useful to consider changing from those
that simply need to be true.

Call the latter filter conditions'.
E.g., ReStack(obj,from,to)

Filter: On(obj,from) OBlock(from) OBlock(to) OBlock(obj)
Pre:Clear(obj) OClear(to)

Add: On(obj,to) OClear(from)

Del:On(obj,from) O Clear(to)

Here we divided preconditions into
'Filter', i.e., literals not worth trying to change
'Pre!, i.e., literals that get turned into subgoals if not true, as before.

How Much Does This Help?

In our planner, without filter conditions, the
M&B problem takes about 1 hour to solve
on a1l gigahertz PC.
It used 2,713,146,715 cons cells.
And it producesaplan with asilly stepinit.
With filter conditions, it istoo fast to time.
It used 10,100 conscells.
And produced a fine plan.

(Why isthe difference so great?)

Operator Selection

Thisis part of 'operator selection'.

In general, might have conditions that
aren't preconditions here.

In general, might know complex conditions
under which various operators should be
considered.
E.g., if my goal is'satisfy hunger’, | consider
different actions at different times of the day, where
| am, etc.
If so, might need to do less planning and more
remembering.

Operator Selection and
Knowledge

One might learn these associations from experience.
E.g., if turning something into a table always fails, make it a
'Filter' rather than a'Pre'.

Maintain 'plan library' of previous plans.

Have ways of generalizing actual plansto be applicable to
something other than the exact situation they were created
for.

Have ways of indexing them so they are considered at the
right time. E.g., store plans that were expensive to compute.

How to generalize from experienceis an interesting

problem!

Y et Another Problem

Can weredly list all the results of an
action?

E.g., if we move ablock, its shadow will move too.

This is the 'Ramification Problem'.

With respect to planning, thisis the ‘plan projection problem.
As with preconditions, we don't want to list
al the effects with each operator, but
instead, have separate, genera facts that
allow us to make inferences.

E.g., if light source, then shadow attached to object.

Moving just changes location of object moved.
We reason by inference that shadow is moved too.

Ramifications and Planning

Note that not listing a ramification of
an action complicates operator
selection.

Before, we just looked for an operator whose ADD list
unifies with a subgoal .

Now, we would need to consider operators whose ADD
list, plus other things, entails a subgoal .

Moreover, if we add ramificationsto a
KB viainference, interesting problems
arise.

Ramification Example

Suppose we knew
Married(Dennis,Carmen)
Brother(Mario,Carmen)
Brother-in-law(Dennis,Mario)
Now suppose thereis a Divorce operator, which,
among other things, removes
Married(Dennis,Carmen)
But now Brother-in-law(Dennis,Mario)
becomes false too.
Just asaMarriage operator couldn’t list all the
states to add, aDivorce operator couldn’t
explicitly list al the operators to remove.

Solution

Maintain 'data dependencies
In effect, keep history of how things got
in the KB.

When aconclusion is no longer justified,
withdraw the conclusion.

Data Dependency
Representation Example

Married(Dennis,Carmen)

Brother(Mario,Carmen) .

\ Married(x,y) OBrother(zy) — Brother-in-law(x,z) \

Brother-in-law(Dennis, Mario)

Removing any justifier invalidates the justification.

Complication

Can have more than one justification
for the same belief.

Only remove a belief if all its
justifications are no longer valid,
properly handling circular justifications.

Data Dependencies

——

\A
I 7"»\ Bellefl u—@il:l
@—> ™ —

-Removing a justifier of J3 will invalidate J1 also.
- Can only remove Belief1 when J1 and J2 are no longer
valid.

Data Dependencies

——

I (1) —p CBeliefl «— DI]

@—» Bz] D) —

——

.J4 is circular, but legitimate. (E.g., can deduce 'married’
again from 'brother-in-law' and ‘no sisters'; so,
invalidating J1 and J3 doesn't invalidate Belief2.)

- Invalidating J3 doesn't invalidate J1.

- But invalidating J3 and J2 does, as the only justification
is circular.

Truth M aintenance

A system that maintains dependencies between sentencesis
called a truth maintenance system.
Generaly, a TMS doesn’t actually remove something from a
KB; instead, it marks statements as being 'in’ or 'out'.
Thisway, it is relatively easy to recompute implications when assumptions
change.
What we have described is a justification-based TMS.
Some TM Ss keep track not of which justifications support
which propositions, but which sets of assumptions support
which propositions.
This "assumption-based truth maintenance system' (ATMS) is afiner-grain level
of support, which, in effect, maintains at the sametime all the situations that
have ever been considered.

Maintaining data dependencies is expensive (NP-hard).

Roanladan't da thicwell gith,

Truth Maintenance and
Planning

Whether we need a TMS for planning is
related to the nature of how we determine
the full consequences of operators.

If we allow operators to have effects via
deduction, then we need a TM S to reason
about the changes from one situation to
another.

Thisis hard, but should be.

Summary

We can get more robust plan execution by storing themin
triangle tables.
We can improve the performance of STRIPS further by
having a more refined idea of preconditions.

Or being smart about operator selection generally.
Reasoning about results can still be tricky.

Maintaining data dependencies can help.

