STRIPS: A More Efficient Planner

Alan Bundy School of Informatics (slides courtesy of Robert Wilensky)

Planning and Acting

- Want algorithms for
 - Making a plan
 - Carrying out the plan
 - Monitoring the execution
 - Why? Plan might not work as expected; world might change
 - Learning from experience

Planning

- Idea: Use special purpose representations and algorithms for more efficient plan production.
 - Representation for situations, actions, goals, plans
 - Algorithms for searching
 - Situation space
 - Plan space

The `STRIPS' Approach

- Represent a situation as knowledge base of (restricted) logical sentences.
- Represent operators by how they should change the KB.
- Reason about the implications of actions by changing the KB.
 - reversibly, so we can back-track cheaply.

Representation in STRIPS

- Situations
 - Conjunctions of ground literals (no functions)
 - Systems differ on whether this is supposed to be a complete or partial representation of the world
 - E.g.: At(Box1,B) ^ At(Box2,C)
 - Of course, we still have general facts about the world that might be represented using implication, etc., but these won't change from situation to situation.
- Goals
 - Same thing, but allow variables (interpreted existentially)
 - E.g., At(Box1,x) ^ At(Box2,x)

STRIPS Operator (Schema) Example

- Go to one location from another.
 - Action Description: Goto(m,n)
 - · Add: At(Robot,n)
 - · Del: At(Robot,m)
 - Pre: At(Robot,m)
- Pushing a box from one location to another.
 - Action Description: Push(k,m,n)
 - · Add: At(Robot,n) ^ At(k,n)
 - · Del: At(Robot,m) \land At(k,m)
 - · Pre: At(Robot,m) \land At(k,m) \land Box(k)
- In general, preconditions might contain more information.

Representing Operators in **STRIPS**

- Action or Operator Schemata
- Components
 - Action description: A way to name the action
 - Add list: What becomes true after the action
 - **Delete list**: What ceases to become true after the action
 - Add and Delete lists are sometimes combined into a single **Effects** list.
 - **Precondition**: What must be true to undertake the action.
- We can only execute actions, meaning a fully instantiated schema.

Using Operators to Search Situation Space

- Search the *space of situations*, which is connected by operator instances, for a situation, accessible from the initial situation, in which the goal pertains.
- The sequence of operator instances is the plan.
- Simulate applying an operator instance by changing the knowledge base.
- In principle, one could use any number of different search strategies to find a plan.
 - Forward from initial state
 - Backward from goal state
 - Other

(What STRIPS Actually Did)

- STRIPS used GPS as a search algorithm:
- Newell and Simon's `General Problem Solver'
 - Determine difference between situation and goal
 - Select an operator that reduces the difference
 - Apply the operator
 - Reconsider goal in new situation

STRIPS and the Frame Problem

- The computational part of the frame problem is now addressed. How?
 - Everything in initial situation is assumed to remain true unless it is mentioned on an Add or Del list.
 - Add, Del lists are relatively small compared to the KB, reflecting the fact that operators don't change much in the world.
 - I.e., moving from one situation to another is essentially linear in number of operators.

STRIPS Algorithm (con't)

- Try to prove the goal in a situation being considered.
 STRIPS used resolution
- If fail, use incomplete proof as the difference.
- Use Add and Del lists of operators to pick on that may help the proof continue.
 - · Heuristic: Look for operator that may help resolve something.
- Turn the preconditions of the operators into new subgoals.
 - Recursively attempt to achieve them.
- Apply operator by modifying the KB.
 - Can reversibly modify the KB, or use Add list as additions and Del list as filters without changing KB.

- Very Simple STRIPS Example
- Initial Situation: At(Robot,A)
- Goal: At(Robot,B)
- Operators:
 - Goto(m,n)
 - Add: At(Robot,n)
 - Del: At(Robot,m)
 - Pre: At(Robot,m)

Push(k,m,n)

- Add: At(Robot,n) ∧ At(k,n)
- Del: At(Robot,m) \land At(k,m)
- $\label{eq:pre: At(Robot,m) \land At(k,m) \land Box(k)} Pre: At(Robot,m) \land At(k,m) \land Box(k)$

Simple STRIPS Example Goal: At(Robot,B)

- Add negated goal ¬At(Robot,B)to KB.
- Proof attempt fails, leaving ¬At(Robot,B) to resolve away.
- · Look for operator to reduce difference, i.e., complete proof.
- Goto(m,n) looks like it will help the proof.
 - because it adds At(Robot,n), which unifies with negation of ¬At(Robot,B), suggesting the (partially instantiated) operator Goto(m,B).
 - Actually, so does Push(k,m,n); heuristic helps select former .
- Precondition becomes new subgoal: At(Robot,m)
- Can prove this, because At(Robot,A)
- Can now execute (fully instantiated operator) Goto(A,B).
- Simulate execution: Hack KB by adding Adds (At(Robot,B)) and deleting Dels (At(Robot,A)).
- Afterwards, KB contains At(Robot,B) (and not At(Robot,A)).
- Now can complete proof, so done!
- Plan is Goto(A,B).

STRIPS Example (con't)

- Negated goal in clausal form: {¬At(Box1,x),¬At(Box2,x),¬At(Box3,x)}
- Resolve with any of the box location predications:
 - {¬At(Box1,x),¬At(Box2,x),¬At(Box3,x)}
 - {At(Box1,B)}
 - {¬At(Box2,B),¬At(Box3,B)}
 - This is our incomplete proof.
- Select operator that might let proof continue.
 - Add list of **Push(k,m,n)** contains **At(k,n)**, which looks promising:
 - {¬At(Box2,B),¬At(Box3,B)}
- {At(k,n)}
- {¬At(Box3,B)}
- with unifier {k/Box2,n/B}
- giving us (partially instantiated) operator **OP**₁: **Push(Box2,m,B)**
- Moreover, Del list is At(Box2,m) \land At(Robot,m); nothing resembling either conjunct is used in the proof so far.

More Interesting STRIPS Example

- Initial Situation (S₀):
 Box(Box1) ^ Box(Box2) ^ Box(Box3)
 At(Robot,A)
 - ∧ At(Box1,B) ∧ At(Box2,C) ∧ At(Box3,D)
- Initial Goal (**G**₀):
 - $\exists x \ At(Box1,x) \land At(Box2,x) \land At(Box3,x)$
 - (I.e., all three boxes should be at the same place.)
- For this example, we'll use the notation (S_i (G_n G_{n-1}...)) to designate being in situation S_i and have goal stack (G_n G_{n-1}...).
- So the initial state of affairs is (S₀ (G₀)).

STRIPS Example (con't)

- New goal is precondition of Push(Box2,m,B):
 G₁: At(Box2,m) ^ At(Robot,m) ^ Box(Box2)
 State of affairs is (S₀ (G₁,G₀))
- Negated goal is

S_o

- {¬At(Box2,m),¬At(Robot,m), ¬Box(Box2)}
- In KB is **Box(Box2)**, so can cancel out ¬**Box(Box2)**.
- Since At(Robot,A), can deduce {¬At(Box2,A)}.
- Since At(Box2,C), can deduce {¬At(Robot,C)}.
- Stuck; need strategy for operator selection.
 - First suggests pushing **Box2** again, a bad idea.
 - · Second suggests Goto operator; less objectionable.
- Specifically:
 - Operator **OP**₂: **Goto(m,C)**
 - Precondition At(Robot,m) becomes new goal G₂.
 - State of affairs is $(S_0 (G_2, G_1, G_0))$

- But we can prove G₂: At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) OP₂: Goto(A,C) to produce new situation, S₁

- But we can prove G₂: At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) OP₂: Goto(A,C) to produce new situation, S₁

- But we can prove G₂: At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) OP₂: Goto(A,C) to produce new situation, S₁
 Add At(Robot,C)
 - $\begin{array}{c} \mathcal{B} \bigoplus_{1} c \bigoplus_{2} \mathcal{D} \\ \mathcal{A} \end{array}$

- Delete At(Robot,A)
- State of affairs is $(S_1 (G_1, G_0))$
- Now we can prove G₁, and hence apply OP₁ getting situation S₂.

- But we can prove G₂: At(Robot,m), because
 At(Robot,A) is true.
- Apply (fully instantiated) OP₂: Goto(A,C) to produce new situation, S₁
 Add At(Robot,C)
 - Delete At(Robot,A)
 - State of affairs is (S₁ (G₁,G₀))
- Now we can prove G_1 , and hence apply OP_{a} getting situation S_2 .

- But we can prove G₂: At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) OP₂: Goto(A,C) to produce new situation, S₁
 Add At(Robot,C)
 - Delete At(Robot,A)
 - State of affairs is $(S_1 (G_1, G_0))$
- igodolarightarrow Now we can prove ${\sf G}_1$, and hence apply ${igodolarightarrow}{\sf P}_{igodolarightarrow}{\sf getting}$

situation S₂

- State of affairs is $(S_2 (G_0))$

🔶 And so on.

я

S.

STRIPS Running Time

• STRIPS spent most of its time in the theorem prover:

Time	TP-time	No. of nodes		No. of operators	
		in sol.	in search	in sol.	in search
			tre e		tre e
66	49.6	9	9	4	4
113	83	13	21	6	6
	Tim e 66 113	Time TP-time 66 49.6 113 83	No. 0 Time TP-time in sol. 66 49.6 9 113 83 13	No. of nodes Time TP-time in sol. in search tree 66 49.6 9 9 113 83 13 21	No. of nodes No. of a Time TP-time in sol. in search in sol. tree 66 49.6 9 9 4 113 83 13 21 6

- It didn't necessarily find a good solution.
 - For M&B problem: get on box, get off box, push box under bananas, get on box, get bananas
- It didn't guarantee finding a solution.
- It was inefficient for handling conjunctive subgoals.
 - We'll return to this problem later.

STRIPS Searches a tree

Summary

- It is more efficient to represent actions by how they modify a KB, than by using the purely logical situation calculus.
- We can do so using a STRIPS-style operator representation.
- This uses add and delete lists.
- STRIPS avoids the need for frame axioms.

