STRIPS: A More Efficient Planner

Alan Bundy
School of Informatics
(slides courtesy of Robert Wilensky)

Planning

- Idea: Use special purpose representations and algorithms for more efficient plan production.
- Representation for situations, actions, goals, plans
- Algorithms for searching
- Situation space
- Plan space

Planning and Acting

- Want algorithms for
- Making a plan
- Carrying out the plan
- Monitoring the execution
- Why? Plan might not work as expected; world might change
- Learning from experience

The 'STRIPS' Approach

- Represent a situation as knowledge base of (restricted) logical sentences.
- Represent operators by how they should change the KB.
- Reason about the implications of actions by changing the KB.
- reversibly, so we can back-track cheaply.

Representation in STRIPS

- Situations
- Conjunctions of ground literals (no functions)

Systems differ on whether this is supposed to be a complete or partial representation of the world
E.g.: $\operatorname{At}($ Box1, $B) \wedge \mathbf{A t}($ Box2,C $)$

- Of course, we still have general facts about the world that might be represented using implication, etc., but these won't change from situation to situation.
- Goals
- Same thing, but allow variables (interpreted existentially)
E.g., $\operatorname{At}($ Box1, $x) \wedge \operatorname{At}($ Box2, $x)$

STRIPS Operator (Schema) Example

Go to one location from another.
Action Description: Goto(m,n)
Add: At(Robot,n)
Del: At(Robot,m)
Pre: At(Robot,m)
Pushing a box from one location to another.
Action Description: Push(k,m,n)
Add: $\mathbf{A t}($ Robot, $n) \wedge \mathbf{A t}(k, n)$
Del: At (Robot,m) $\wedge A t(k, m)$
Pre: $A t(R o b o t, m) \wedge A t(k, m) \wedge B o x(k)$
In general, preconditions might contain more information.

Representing Operators in STRIPS

- Action or Operator Schemata
- Components
- Action description: A way to name the action
- Add list: What becomes true after the action
- Delete list: What ceases to become true after the action

Add and Delete lists are sometimes combined into a single Effects list.

- Precondition: What must be true to undertake the action.
- We can only execute actions, meaning a fully instantiated schema.

Using Operators to Search Situation Space

Search the space of situations, which is connected by operator instances, for a situation, accessible from the initial situation, in which the goal pertains.
The sequence of operator instances is the plan.

- Simulate applying an operator instance by changing the knowledge base.
In principle, one could use any number of different search strategies to find a plan.

Forward from initial state

Backward from goal state
Other

(What STRIPS Actually Did)

- STRIPS used GPS as a search algorithm:
- Newell and Simon's `General Problem Solver'
- Determine difference between situation and goal
- Select an operator that reduces the difference
- Apply the operator
- Reconsider goal in new situation

Try to prove the goal in a situation being considered. STRIPS used resolution
If fail, use incomplete proof as the difference.
Use Add and Del lists of operators to pick on that may help the proof continue.

Heuristic: Look for operator that may help resolve something.
Turn the preconditions of the operators into new subgoals.
Recursively attempt to achieve them.
Apply operator by modifying the KB.
Can reversibly modify the KB, or use Add list as additions and Del list as filters without changing KB.

STRIPS and the Frame

 Problem- The computational part of the frame problem is now addressed. How?
- Everything in initial situation is assumed to remain true unless it is mentioned on an Add or Del list.
- Add, Del lists are relatively small compared to the KB, reflecting the fact that operators don't change much in the world.
- I.e., moving from one situation to another is essentially linear in number of operators.

Very Simple STRIPS Example

- Initial Situation: At(Robot,A)
- Goal: At(Robot,B)
- Operators: Goto(m,n)

Add: At(Robot,n)
Del: At(Robot,m)
Pre: At(Robot,m) Push(k,m,n)

Add: $\mathbf{A t}($ Robot, $n) \wedge \mathbf{A t}(k, n)$
Del: $\quad A t(R o b o t, m) \wedge A t(k, m)$
Pre: $\quad \mathbf{A t}($ Robot,$m) \wedge \mathbf{A t}(k, m) \wedge B o x(k)$

Simple STRIPS Example Goal:
 At(Robot,B)

More Interesting STRIPS Example

Initial Situation $\left(\mathrm{S}_{0}\right)$:

```
Box(Box1) ^Box(Box2) ^ Box(Box3)
```

\wedge At(Robot, A)
$\wedge A t(B o x 1, B) \wedge A t(B o x 2, C) \wedge A t(B o x 3, D)$

- Initial Goal $\left(\mathrm{G}_{0}\right)$:
$\exists \mathrm{xAt}($ Box1, x$) \wedge \mathrm{At}($ Box2,x) $\wedge \mathrm{At}($ Box3,x)
(I.e., all three boxes should be at the same place.)
- For this example, we'll use the notation $\left(\mathbf{S}_{\mathbf{i}}\left(\mathbf{G}_{\mathrm{n}}\right.\right.$ $\left.G_{n-1} . ..\right)$) to designate being in situation S_{i} and have goal stack $\left(G_{n} G_{n-1} . ..\right)$.
- So the initial state of affairs is $\left(S_{0}\left(G_{0}\right)\right)$.

STRIPS Example (con't)

Negated goal in clausal form:
$\{\neg A t(B o x 1, x), \neg A t(B o x 2, x), \neg A t(B o x 3, x)\}$
Resolve with any of the box location predications:
$\{\neg$ At(Box1,x), \neg At(Box2,x), \neg At(Box3, x$)$ \}
\{At(Box1,B)\} \qquad
$\neg A t(B o x 2, B), \neg A t(B o x 3, B)\}$
This is our incomplete proof.
Select operator that might let proof continue.
Add list of Push(k,m,n) contains At(k,n), which looks promising:
$\{\neg A t(B o x 2, B), \neg A t(B o x 3, B)\}$
$\{A t(k, n)\}$ \qquad
$\{\neg \mathrm{At}(\mathrm{Box} 3, \mathrm{~B})$ \}
with unifier $\{\mathbf{k} /$ Box $2, \mathrm{n} / \mathrm{B}\}$
giving us (partially instantiated) operator OP_{1} : Push(Box2,m,B)
Moreover, Del list is $\mathbf{A t}($ Box2,m $) \wedge \mathbf{A t}($ Robot, $m)$; nothing resembling either conjunct is used in the proof so far.

New goal is precondition of Push(Box2,m,B):
$\mathrm{G}_{1}: \mathrm{At}($ Box2,m) $\wedge \mathbf{A t}($ Robot, $m) \wedge$ Box(Box2)
State of affairs is $\left(S_{0}\left(G_{1}, G_{0}\right)\right)$
Negated goal is
$\{\neg \mathrm{At}($ Box2,m),$\neg \mathrm{At}($ Robot,m), \neg Box(Box2) \}
In KB is $\operatorname{Box}(B o x 2)$, so can cancel out \neg Box(Box2).
Since At(Robot,A), can deduce $\{\neg$ At (Box2,A) \}.
Since At(Box2,C), can deduce $\{\neg$ At(Robot,C) $\}$.
Stuck; need strategy for operator selection.
First suggests pushing Box2 again, a bad idea.
Second suggests Goto operator; less objectionable.
Specifically:
Operator OP_{2} : Goto(m,C)
Precondition $\operatorname{At}\left(\right.$ Robot, m) becomes new goal G_{2}.
State of affairs is $\left(S_{0}\left(G_{2}, G_{1}, G_{0}\right)\right)$

- But we can prove G_{2} : $\mathbf{A t}($ Robot, m$)$, because At(Robot,A) is true.
- Apply (fully instantiated) OP_{2} : $\operatorname{Goto}(\mathrm{A}, \mathrm{C})$ to produce new situation, \mathbf{S}_{1}
- But we can prove G_{2} : $\mathrm{At}($ Robot, m$)$, because At(Robot,A) is true.
- Apply (fully instantiated) OP_{2} : $\operatorname{Goto}(\mathrm{A}, \mathrm{C})$ to produce new situation, \mathbf{S}_{1}

STRIPS Example (con't)

- But we can prove G_{2} : At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) $\mathbf{O P}_{2}$: $\operatorname{Goto}(\mathrm{A}, \mathrm{C})$ to produce new situation, \mathbf{S}_{1} - $\mathfrak{A d d}$ At(Robot,C)

- Delete At(Robot,A)
- State of affairs is $\left(\mathbf{S}_{1}\left(\mathbf{G}_{1}, \mathbf{G}_{0}\right)\right)$
\checkmark Now we can prove \mathbf{G}_{1}, and hence apply $\mathbf{O P}_{1}$ getting situation \mathbf{S}_{2}.

STRIPS Example (con't)

- But we can prove G_{2} : At(Robot,m), because At(Robot,A) is true.
- Apply (fully instantiated) $\mathbf{O P}_{2}$: $\operatorname{Goto}(\mathrm{A}, \mathrm{C})$ to produce new situation, \mathbf{S}_{1}
- Delete At(Robot,A)
- State of affairs is $\left(\mathbf{S}_{1}\left(\mathbf{G}_{1}, \mathbf{G}_{0}\right)\right)$
\checkmark Now we can prove G_{1}, and hence apply OP_{1} getting situation \mathbf{S}_{2}.

- But we can prove G_{2} : $\mathbf{A t}($ Robot, m$)$, because At(Robot, \mathbf{A}) is true.
- Apply (fully instantiated) OP_{2} : Goto(A, C) to

STRIPS Running Time

STRIPS spent most of its time in the theorem prover:

	Time	\mathcal{T} - -time	\mathcal{N} o. of nodes		\mathcal{N} o. of operators	
			in sol.	in search	in sol.	in search
				tree		tree
3 boxes	66	49.6	9	9	4	4
$\mathfrak{M C H}$	113	83	13	21	6	6

It didn't necessarily find a good solution.

- For M\&B problem: get on box, get off box, push box under bananas, get on box, get bananas
- It didn't guarantee finding a solution.
- It was inefficient for handling conjunctive subgoals.
- We'll return to this problem later.

STRIPS Searches a tree

Summary

It is more efficient to represent actions by how they modify a KB, than by using the purely logical situation calculus.
We can do so using a STRIPS-style operator representation.
This uses add and delete lists.
STRIPS avoids the need for frame axioms.

