
Planning

� Idea: Use special purpose
representations and algorithms for
more efficient plan production.

� Representation for situations, actions,
goals, plans

� Algorithms for searching

� Situation space

� Plan space

The `STRIPS' Approach
� Represent a situation as knowledge base of

(restricted) logical sentences.

� Represent operators by how they should
change the KB.

� Reason about the implications of actions by
changing the KB.

� reversibly, so we can back-track cheaply.

STRIPS: A More Efficient Planner

Alan Bundy

School of Informatics

(slides courtesy of Robert Wilensky)

Planning and Acting

� Want algorithms for

� Making a plan

� Carrying out the plan

� Monitoring the execution

� Why? Plan might not work as expected;
world might change

� Learning from experience

Representing Operators in
STRIPS

� Action or Operator Schemata

� Components

� Action description: A way to name the action

� Add list: What becomes true after the action

� Delete list: What ceases to become true after the action

� Add and Delete lists are sometimes combined into a single
Effects list.

� Precondition: What must be true to undertake the
action.

� We can only execute actions, meaning a fully
instantiated schema.

Using Operators to Search
Situation Space

� Search the space of situations, which is connected by
operator instances, for a situation, accessible from the
initial situation, in which the goal pertains.

� The sequence of operator instances is the plan.

� Simulate applying an operator instance by changing the
knowledge base.

� In principle, one could use any number of different search
strategies to find a plan.

� Forward from initial state

� Backward from goal state

� Other

Representation in STRIPS

� Situations

� Conjunctions of ground literals (no functions)

� Systems differ on whether this is supposed to be a complete or
partial representation of the world

� E.g.: At(Box1,B) ∧ At(Box2,C)

� Of course, we still have general facts about the world
that might be represented using implication, etc., but
these won't change from situation to situation.

� Goals

� Same thing, but allow variables (interpreted
existentially)

� E.g., At(Box1,x) ∧ At(Box2,x)

STRIPS Operator (Schema)
Example

� Go to one location from another.

	 Action Description: Goto(m,n)

	 Add: At(Robot,n)

	 Del: At(Robot,m)

	 Pre: At(Robot,m)

� Pushing a box from one location to another.

	 Action Description: Push(k,m,n)

	 Add: At(Robot,n) ∧ At(k,n)

	 Del: At(Robot,m) ∧ At(k,m)

	 Pre: At(Robot,m) ∧ At(k,m) ∧ Box(k)

� In general, preconditions might contain more information.

STRIPS Algorithm (con’ t)

� Try to prove the goal in a situation being considered.

� STRIPS used resolution

� If fail, use incomplete proof as the difference.

� Use Add and Del lists of operators to pick on that may help
the proof continue.

� Heuristic: Look for operator that may help resolve something.

� Turn the preconditions of the operators into new subgoals.

� Recursively attempt to achieve them.

� Apply operator by modifying the KB.

� Can reversibly modify the KB, or use Add list as additions and Del
list as filters without changing KB.

Very Simple STRIPS Example
� Initial Situation: At(Robot,A)

� Goal: At(Robot,B)
� Operators:

Goto(m,n)
Add: At(Robot,n)
Del: At(Robot,m)
Pre: At(Robot,m)

Push(k,m,n)
Add: At(Robot,n) ∧ At(k,n)

Del: At(Robot,m) ∧ At(k,m)

Pre: At(Robot,m) ∧ At(k,m) ∧ Box(k)

(What STRIPS Actually Did)

� STRIPS used GPS as a search algorithm:

� Newell and Simon's `General Problem
Solver'

� Determine difference between situation and
goal

� Select an operator that reduces the difference

� Apply the operator

� Reconsider goal in new situation

STRIPS and the Frame
Problem

� The computational part of the frame problem is
now addressed. How?

� Everything in initial situation is assumed to remain true
unless it is mentioned on an Add or Del list.

� Add, Del lists are relatively small compared to the KB,
reflecting the fact that operators don’ t change much in
the world.

� I.e., moving from one situation to another is essentially
linear in number of operators.

More Interesting
STRIPS Example

� Initial Situation (S0):
Box(Box1) ∧ Box(Box2) ∧ Box(Box3)

∧ At(Robot,A)

∧ At(Box1,B) ∧ At(Box2,C) ∧ At(Box3,D)

� Initial Goal (G0):

∃x At(Box1,x) ∧ At(Box2,x) ∧ At(Box3,x)
(I.e., all three boxes should be at the same place.)

� For this example, we'll use the notation (Si (Gn

Gn-1 …)) to designate being in situation Si and have
goal stack (Gn Gn-1 …).

� So the initial state of affairs is (S0 (G0)).

B C D

A S0

1 2 3

STRIPS Example
(con’ t)

� New goal is precondition of Push(Box2,m,B):
G1: At(Box2,m) ∧ At(Robot,m) ∧ Box(Box2)

State of affairs is (S0 (G1,G0))

� Negated goal is
{¬At(Box2,m),¬At(Robot,m), ¬Box(Box2)}

� In KB is Box(Box2), so can cancel out ¬Box(Box2).

� Since At(Robot,A), can deduce {¬At(Box2,A)}.

� Since At(Box2,C), can deduce {¬At(Robot,C)}.

� Stuck; need strategy for operator selection.

� First suggests pushing Box2 again, a bad idea.

� Second suggests Goto operator; less objectionable.

� Specifically:

� Operator OP2: Goto(m,C)

� Precondition At(Robot,m) becomes new goal G2.

� State of affairs is (S0 (G2,G1,G0))

B C D

A S0

1 2 3

Simple STRIPS Example Goal:
At(Robot,B)

� Add negated goal ¬At(Robot,B)to KB.

� Proof attempt fails, leaving ¬At(Robot,B) to resolve away.

� Look for operator to reduce difference, i.e., complete proof.

� Goto(m,n) looks like it will help the proof.

� because it adds At(Robot,n), which unifies with negation of
¬At(Robot,B), suggesting the (partially instantiated) operator
Goto(m,B).

� Actually, so does Push(k,m,n); heuristic helps select former .

� Precondition becomes new subgoal: At(Robot,m)

� Can prove this, because At(Robot,A)

� Can now execute (fully instantiated operator) Goto(A,B).

� Simulate execution: Hack KB by adding Adds (At(Robot,B)) and
deleting Dels (At(Robot,A)).

� Afterwards, KB contains At(Robot,B) (and not At(Robot,A)).

� Now can complete proof, so done!

� Plan is Goto(A,B).

STRIPS Example
(con’ t)

� Negated goal in clausal form:
{¬At(Box1,x),¬At(Box2,x),¬At(Box3,x)}

� Resolve with any of the box location predications:
{¬At(Box1,x),¬At(Box2,x),¬At(Box3,x)}
{At(Box1,B)}
{¬At(Box2,B),¬At(Box3,B)}

� This is our incomplete proof.

� Select operator that might let proof continue.

� Add list of Push(k,m,n) contains At(k,n), which looks promising:
{¬At(Box2,B),¬At(Box3,B)}
{At(k,n)}
{¬At(Box3,B)}
with unifier {k/Box2,n/B}
giving us (partially instantiated) operator OP1: Push(Box2,m,B)

Moreover, Del list is At(Box2,m) ∧ At(Robot,m); nothing resembling
either conjunct is used in the proof so far.

B C D

A S0

1 2 3

STRIPS Example
(con't)

� But we can prove G2: At(Robot,m), because
At(Robot,A) is true.

� Apply (fully instantiated) OP2: Goto(A,C) to

produce new situation, S1 B C D

A S1

1 2

B C D

A S0

1 2 3

STRIPS Example
(con't)

� But we can prove G2: At(Robot,m), because
At(Robot,A) is true.

� Apply (fully instantiated) OP2: Goto(A,C) to

produce new situation, S1 B C D

A S1

1 2

B C D

A S0

1 2 3

– Add At(Robot,C)

– Delete At(Robot,A)

– State of affairs is (S1 (G1,G0))

uNow we can prove G1, and hence apply OP1 getting
situation S2.

B C D

A S2

1

2

STRIPS Example
(con't)

� But we can prove G2: At(Robot,m), because
At(Robot,A) is true.

� Apply (fully instantiated) OP2: Goto(A,C) to

produce new situation, S1

B C D

A S0

1 2 3

STRIPS Example
(con't)

� But we can prove G2: At(Robot,m), because
At(Robot,A) is true.

� Apply (fully instantiated) OP2: Goto(A,C) to

produce new situation, S1 B C D

A S1

1 2

B C D

A S0

1 2 3

– Add At(Robot,C)

– Delete At(Robot,A)

– State of affairs is (S1 (G1,G0))

uNow we can prove G1, and hence apply OP1 getting
situation S2.

STRIPS Searches a tree
(S0, (G0))

(S0, (Ga,G0)) (S0, (Gb,G0))

(S1, (G0))

Apply OPa
(S0, (Gc, Gb,G0))

(S2, (Gb,G0))

Apply OPc

Apply OPb

(S3, (G0))

(S1, (Gd,G0))

(S3, (Gf,G0))(S3, (Ge,G0))

(S4, (G0))

Apply OPe

Dotted line shows order
of node expansion.

Summary
� It is more efficient to represent actions by how they modify

a KB, than by using the purely logical situation calculus.
� We can do so using a STRIPS-style operator

representation.

� This uses add and delete lists.

� STRIPS avoids the need for frame axioms.

STRIPS Example
(con't)

� But we can prove G2: At(Robot,m), because
At(Robot,A) is true.

� Apply (fully instantiated) OP2: Goto(A,C) to

produce new situation, S1 B C D

A S1

1 2

B C D

A S0

1 2 3

– Add At(Robot,C)

– Delete At(Robot,A)

– State of affairs is (S1 (G1,G0))

uNow we can prove G1, and hence apply OP1 getting
situation S2.

B C D

A S2

1

2

– State of affairs is (S2 (G0))

uAnd so on.

� STRIPS spent most of its time in the theorem
prover:

� It didn't necessarily find a good solution.

� For M&B problem: get on box, get off box, push box
under bananas, get on box, get bananas

� It didn't guarantee finding a solution.

� It was inefficient for handling conjunctive
subgoals.

� We'll return to this problem later.

No . o f no d e s No . o f ope r at o r s
T im e T P- t im e in s o l. in s e a r c h

t r e e
in s o l. in s e ar c h

t r e e
3 b o x e s 6 6 4 9 .6 9 9 4 4
M&B 113 8 3 13 2 1 6 6

STRIPS Running Time

