Using Logic to Plan

Alan Bundy School of Informatics (slides courtesy of Robert Wilensky)

• Need

- A way of representing the world.
- A way of representing the goal.
- A way of representing how actions change the world.
- We haven't said much about the last.
 - Difficulty is, after an action, new things are true, and some previously true facts are no longer true.

Situations

- Idea:
 - Introduce a notion of *situations*.
 - State facts about situations.
 - By relativizing predications to situations.
 - E.g., instead of saying just **On**(**A**,**B**), say (somehow) '**On**(**A**,**B**) in situation **S**_{0'.}
 - Actions
 - will be performed in a situation, and
 - will produce new situations with new facts.

Representing Predications Relative to a Situation

- Can add a place for a situation to each predicate that can change.
 - E.g., instead of **On**(**A**,**B**), write **On**(**A**,**B**,**S**₀)
- Alternatively, introduce a predicate Holds; make **On**, etc., *functions*:
 - E.g., Holds(On(A,B),S₀)
 - What do things like **On**(**A**,**B**) now mean?
 - Either a category of situations, in which A is on B, or a set of those situations.

How This Will Work

 Before some action, we might have in our KB: On(A,B,S₀)
 On (B, T, H, S)

On(**B**,**Table**,**S**₀)

- ••••
- After an action that moves A to the table, say, we add

Clear(B,S₁)

On(**A**,**Table**,**S**₁)

• All these propositions are true, but we have dealt with the issue of change, by keeping track of what is true when.

Same Thing, Slightly Different Notation

- Before : Holds(On(A,B),S₀) Holds(On(B,Table),S₀)
- After, add Holds(Clear(B),S₁) Holds(On(A,Table),S₁)

•••

•

Representing Actions

- Need to represent:
 - Results of doing an action
 - Conditions that need to be in place to perform an action.
- For convenience, we will define *functions* to abbreviate actions:
 - E.g., Move(A,B) denotes the *action type* of moving A onto B.
 - These are action *types*, because actions themselves are specific to time, etc.
- Now, introduce a *function* **Result**, designating `the situation resulting from doing an action type in some situation'.
- E.g., **Result(Move(A,B),S**₀) means `the situation resulting from doing an action of type **Move(A,B)** in situation S₀'.

How This Works

 Keep in mind that things like Result(Move(A,B),S₀)

are terms, and denote situations.

- They can appear anywhere we would expect a situation.
- So we can say things like S₁=Result(Move(A,B),S₀) On(A,B,Result(Move(A,B),S₀)) On(A,B,S₁) (Alternatively, Holds(On(A,B),Result(Move(A,B),S₀)), etc.)

Axiomatizing Actions

- Now we can describe the results of actions, together with their preconditions.
- E.g., 'If nothing is on x and y, then one can move x to on top of y, in which case x will then be on y.'

 $\forall x,y,s \ Clear(x,s) \land Clear(y,s)$

 \Rightarrow On(x,y,Result(Move(x,y),s))

- Alternatively:
 - ∀**x,y,s**

 $Holds(Clear(x),s) \land Holds(Clear(y),s)$

- \Rightarrow Holds(On(x,y), Result(Move(x,y),s))
- This is an *effect axiom*.
 - Although it includes a precondition as well.

Situation Calculus

- This approach is called the *situation calculus*.
- We axiomitize all our actions, then use a general theorem prover to prove that a situation exists in which our goal is true.
- The actions in the proof would comprise our plan.

A Very Simple Example

• KB: $On(A,Table,S_0)$ $On(B,C,S_0)$ $On(C,Table,S_0)$ $Clear(A,S_0)$ $Clear(B,S_0)$ $Clear(B,S_0)$

and axioms about actions, etc.

• Goal:

∃s' On(A,B,s')

What happens?

- We try to prove **On**(**A**,**B**,**s**')
 - Find axiom
 - $\forall x, y, s \; Clear(x, s) \land Clear(y, s)$
 - \Rightarrow On(x,y,Result(Move(x,y),s))
 - By chaining, e.g., goal would be true if we could prove Clear(A,s) ∧ Clear(B,s).
 - But both are true in S₀, so we can conclude On(A,B,Result(Move(A,B),S₀))
- We are done!
- We look in the proof and see only one action, Move(A,B), which is executed in situation S₀, so this is our plan.

Tougher Example: Same Initial World, Harder Goal

and axioms about actions, etc.

Goal:

$\exists s' On(A,B,s') \land On(B,C,s')$

(Intuitively, really not harder: B already on C, and we just showed how to make A on B.)

The Frame Problem

- We have failed to express the fact that everything that isn't changed by an action stays the same.
- Can fix by adding *frame axioms*. E.g.: ∀x,y,z,s

 $Clear(x,s) \Rightarrow Clear(x, Result(Paint(x,y),s))$

•••

- There are *lots* of these!
- Is this a big problem?

With Goal $\exists s'On(A,B,s') \land On(B,C,s')$

- Suppose we try to prove the first subgoal, **On**(**A**,**B**,**s**').
 - Use same axiom
 - $\forall x,y,s \ Clear(x,s) \land Clear(y,s)$
 - \Rightarrow On(x,y, Result(Move(x,y),s))
 - Again, by chaining, we can conclude **On(A,B,Result(Move(A,B),S₀))**.
 - Abbreviating **Result(Move(A,B),S**₀) as S_1 , we have **On(A,B,S**₁).
- Substituting in our other subgoal makes that $On(B,C,S_1)$. If this is true, we're done.
- But we have no reason to believe this is true!
- Sure, On(B,C,S₀), but how does the planner know this is still true, i.e., On(B,C,S₁)?
- · In fact, it doesn't, so it fails to find an answer!

Better Frame Axioms

• Can fix with neater formulation:

∀**x,y,z,s,a**

 $On(x,y,s) \land \neg(a=Move(x,z) \land \neg y=z)$

- \Rightarrow On(x,y,Result(a,s))
- Can combine with effect axioms to get *successor-state axioms*:

∀x,y,z,s,a

 $On(x,y,Result(a,s)) \Leftrightarrow$

 $On(x,y,s) \land \neg(a=Move(x,z) \land \neg y=z)$

 $\lor \ Clear(x,s) \land Clear(y,s) \land a=Move(x,y)$

Note How This Helps Our Example

• Want to prove **On**(**B**,**C**,**Result**(**Move**(**A**,**B**),**S**₀) given that **On(B,C,S**₀) Axiom says $On(x,y,Result(a,s)) \Leftrightarrow$ $On(x,y,s) \land \neg(a=Move(x,z) \land \neg y=z)$ \vee Clear(x,s) \wedge Clear(y,s) \wedge a=Move(x,y) So need to show $On(B,C,S_0) \land \neg(Move(A,B)=Move(B,z) \land \neg C=z)$

•

The first conjunct is in the KB; the second is true because the actions are clearly different.

Frame problem partially solved

- This solves the representational part of the frame problem.
- Still have to compute that everything that was true that wasn't changed is still true. Inefficient (as is general theorem proving).
- Solution: Special purpose representations, special purpose algorithms, called *Planners*.