
Using Logic to Plan

� Need

� A way of representing the world.

� A way of representing the goal.

� A way of representing how actions change the 
world.

� We haven't said much about the last.

� Difficulty is, after an action, new things are 
true, and some previously true facts are no 
longer true.

Representing Predications Relative to 
a Situation

� Can add a place for a situation to each 
predicate that can change.

� E.g., instead of On(A,B), write On(A,B,S0)

� Alternatively, introduce a predicate Holds; 
make On, etc., functions:

� E.g., Holds(On(A,B),S0)

� What do things like On(A,B) now mean? 

� Either a category of situations, in which A is on B, 
or a set of those situations.
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Situations

� Idea:  

� Introduce a notion of situations.

� State facts about situations.

� By relativizing predications to situations.

� E.g., instead of saying just On(A,B), say (somehow) 
'On(A,B) in situation S0'.

� Actions 

� will be performed in a situation, and

� will produce new situations with new facts.



Same Thing, Slightly Different 
Notation

� Before :
Holds(On(A,B),S0)

Holds(On(B,Table),S0)

...

� After, add
Holds(Clear(B),S1)

Holds(On(A,Table),S1)

How This Works
� Keep in mind that things like

Result(Move(A,B),S0)

are terms, and denote situations.

� They can appear anywhere we would expect a situation.

� So we can say things like
S1=Result(Move(A,B),S0)
On(A,B,Result(Move(A,B),S0))
On(A,B,S1)

(Alternatively, Holds(On(A,B),Result(Move(A,B),S0)), 
etc.)

How This Will Work

� Before some action, we might have in our KB:
On(A,B,S0)
On(B,Table,S0)

....

� After an action that moves A to the table, say, we 
add
Clear(B,S1)
On(A,Table,S1)

� All these propositions are true, but we have dealt 
with the issue of change, by keeping track of what 
is true when.

Representing Actions

� Need to represent:

� Results of doing an action

� Conditions that need to be in place to perform an action.

� For convenience, we will define functions to abbreviate actions:

� E.g., Move(A,B) denotes the action type of moving A onto B.

� These are action types, because actions themselves are specific to time, 
etc.

� Now, introduce a function Result, designating `the situation resulting 
from doing an action type in some situation'.

� E.g., Result(Move(A,B),S0) means `the situation resulting from doing an 

action of type Move(A,B) in situation S0'.



Situation Calculus

� This approach is called the situation 
calculus.

� We axiomitize all our actions, then use 
a general theorem prover to prove that 
a situation exists in which our goal is 
true.

� The actions in the proof would 
comprise our plan.

What happens?

� We try to prove On(A,B,s')
� Find axiom

   ∀x,y,s Clear(x,s) ∧ Clear(y,s) 
        ⇒ On(x,y,Result(Move(x,y),s))

� By chaining, e.g., goal would be true if we could prove 
Clear(A,s) ∧ Clear(B,s).  

� But both are true in S0, so we can conclude  
On(A,B,Result(Move(A,B),S0))

� We are done!

� We look in the proof and see only one action, 
Move(A,B), which is executed in situation S0, so 
this is our plan.

Axiomatizing Actions

� Now we can describe the results of actions, together with 
their preconditions.

� E.g., 'If nothing is on x and y, then one can move x to on 
top of y, in which case x will then be on y.'

∀x,y,s Clear(x,s) ∧ Clear(y,s) 

        ⇒ On(x,y,Result(Move(x,y),s))
3. Alternatively:

∀x,y,s 
   Holds(Clear(x),s) ∧ Holds(Clear(y),s) 

   ⇒ Holds(On(x,y), Result(Move(x,y),s))

� This is an effect axiom.

� Although it includes a precondition as well.

A Very Simple Example

� KB:
On(A,Table,S0)
On(B,C,S0)
On(C,Table,S0)
Clear(A,S0)
Clear(B,S0)

and axioms about actions, etc.

� Goal:
∃s' On(A,B,s')
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With Goal 
∃s'On(A,B,s') ∧ On(B,C,s')

� Suppose we try to prove the first subgoal, On(A,B,s').

� Use same axiom

   ∀x,y,s Clear(x,s) ∧ Clear(y,s) 

      ⇒ On(x,y, Result(Move(x,y),s))

� Again, by chaining, we can conclude  
On(A,B,Result(Move(A,B),S0)).

� Abbreviating Result(Move(A,B),S0) as S1, we have        
On(A,B,S1).

� Substituting in our other subgoal makes that On(B,C,S1).  
If this is true, we're done.

� But we have no reason to believe this is true!

� Sure, On(B,C,S0), but how does the planner know this is 
still true, i.e., On(B,C,S1)?

� In fact, it doesn't, so it fails to find an answer!

Better Frame Axioms
� Can fix with neater formulation:

∀x,y,z,s,a
 On(x,y,s) ∧ ¬(a=Move(x,z) ∧ ¬y=z)

    ⇒ On(x,y,Result(a,s))

� Can combine with effect axioms to get successor-
state axioms:
∀x,y,z,s,a
 On(x,y,Result(a,s)) ⇔   

     On(x,y,s) ∧ ¬(a=Move(x,z) ∧ ¬y=z)

  ∨  Clear(x,s) ∧ Clear(y,s) ∧ a=Move(x,y) 

Tougher Example: Same Initial 
World, Harder Goal

� KB:
On(A,Table,S0)
On(B,C,S0)
On(C,Table,S0)
Clear(A,S0)
Clear(B,S0)

and axioms about actions, etc.

�Goal:
∃s'  On(A,B,s') ∧ On(B,C,s')

   (Intuitively, really not harder: B already on C, and we just 
showed how to make A on B.)
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The Frame Problem

� We have failed to express the fact that 
everything that isn't changed by an action 
stays the same.

� Can fix by adding frame axioms.  E.g.:
∀x,y,z,s 
Clear(x,s) ⇒ Clear(x, Result(Paint(x,y),s))
...

� There are lots of these!

� Is this a big problem?



Frame problem partially solved

� This solves the representational part of the 
frame problem.

� Still have to compute that everything that 
was true that wasn't changed is still true.  
Inefficient (as is general theorem proving).

� Solution:  Special purpose representations, 
special purpose algorithms, called Planners.

Note How This Helps Our 
Example

� Want to prove
On(B,C,Result(Move(A,B),S0)

given that On(B,C,S0)

Axiom says 
On(x,y,Result(a,s)) ⇔   

     On(x,y,s) ∧ ¬(a=Move(x,z) ∧ ¬y=z)

    ∨  Clear(x,s) ∧ Clear(y,s) ∧ a=Move(x,y)

� So need to show
On(B,C,S0) ∧ ¬(Move(A,B)=Move(B,z) ∧ ¬C=z)

   The first conjunct is in the KB; the second is true 
because the actions are clearly different.


