Using Logic to Plan

- Need
- A way of representing the world.
- A way of representing the goal.
- A way of representing how actions change the world.
- We haven't said much about the last.
- Difficulty is, after an action, new things are true, and some previously true facts are no longer true.

Situations

- Idea:
- Introduce a notion of situations.
- State facts about situations.
- By relativizing predications to situations.
- E.g., instead of saying just $\mathbf{O n}(\mathbf{A}, \mathbf{B})$, say (somehow) 'On (A, B) in situation S_{0}.
- Actions
- will be performed in a situation, and
- will produce new situations with new facts.

Alan Bundy

School of Informatics (slides courtesy of Robert Wilensky)

Representing Predications Relative to a Situation

- Can add a place for a situation to each predicate that can change.
- E.g., instead of $\mathbf{O n}(\mathbf{A}, \mathrm{B})$, write $\mathbf{O n}\left(\mathbf{A}, \mathbf{B}, \mathrm{S}_{0}\right)$
- Alternatively, introduce a predicate Holds; make On, etc., functions:
- E.g., Holds(On(A,B), \mathbf{S}_{0})
- What do things like $\mathbf{O n}(\mathbf{A}, \mathbf{B})$ now mean?
- Either a category of situations, in which \mathbf{A} is on \mathbf{B}, or a set of those situations.

How This Will Work

- Before some action, we might have in our KB:

On(A,B,S $\left.\mathbf{S}_{0}\right)$
On(B,Table, \mathbf{S}_{0})

- After an action that moves A to the table, say, we add
Clear(B, \mathbf{S}_{1})
On(A,Table, \mathbf{S}_{1})
- All these propositions are true, but we have dealt with the issue of change, by keeping track of what is true when.

Representing Actions

Need to represent:
Results of doing an action
Conditions that need to be in place to perform an action.
For convenience, we will define functions to abbreviate actions:
E.g., Move(A,B) denotes the action type of moving A onto B.

These are action types, because actions themselves are specific to time, etc.
Now, introduce a function Result, designating `the situation resulting from doing an action type in some situation'.

- E.g., $\operatorname{Result(Move(\mathbf {A},\mathbf {B}),\mathbf {S}_{0})\text {means`thesituationresultingfromdoingan}}$ action of type Move (A, B) in situation $S_{0}{ }^{\prime}$.

Same Thing, Slightly Different Notation

- Before :

Holds($\left.\mathbf{O n}(\mathbf{A}, \mathrm{B}), \mathbf{S}_{0}\right)$
Holds(On(B,Table), $\mathbf{S}_{\mathbf{0}}$)
-..

- After, add

Holds(Clear(B), \mathbf{S}_{1})
Holds(On(A,Table), \mathbf{S}_{1})

How This Works

- Keep in mind that things like

Result(Move(A,B), \mathbf{S}_{0})
are terms, and denote situations.

- They can appear anywhere we would expect a situation.
- So we can say things like
$\mathrm{S}_{1}=\operatorname{Result}\left(\operatorname{Move}(\mathbf{A}, \mathrm{B}), \mathrm{S}_{0}\right)$
On(A,B,Result($\left.\left.\operatorname{Move}(A, B), S_{0}\right)\right)$
On(A,B,S $\left.\mathbf{S}_{1}\right)$
(Alternatively, $\operatorname{Holds}\left(\mathbf{O n}(\mathbf{A}, \mathbf{B}), \operatorname{Result}\left(\operatorname{Move}(\mathbf{A}, \mathbf{B}), \mathbf{S}_{0}\right)\right.$), etc.)

Axiomatizing Actions

Now we can describe the results of actions, together with their preconditions.
E.g., 'If nothing is on x and y , then one can move x to on top of y , in which case x will then be on y .'
$\forall \mathrm{x}, \mathrm{y}, \mathrm{s} \operatorname{Clear}(\mathrm{x}, \mathrm{s}) \wedge \operatorname{Clear}(\mathrm{y}, \mathrm{s})$
$\Rightarrow \operatorname{On}(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\operatorname{Move}(\mathbf{x}, \mathbf{y}), \mathbf{s}))$
Alternatively:
$\forall \mathbf{x}, \mathbf{y}, \mathbf{s}$
Holds(Clear(x),s) ^Holds(Clear(y),s)
$\Rightarrow \operatorname{Holds}(\operatorname{On}(\mathbf{x}, \mathbf{y}), \operatorname{Result}(\operatorname{Move}(\mathbf{x}, \mathbf{y}), \mathbf{s}))$
This is an effect axiom.
Although it includes a precondition as well.

A Very Simple Example

- KB:

On(A,Table, S_{0})
On(B,C,S $\left.\mathbf{S}_{0}\right)$
On(C,Table, \mathbf{S}_{0})
Clear $\left(A, S_{0}\right)$
Clear(B, \mathbf{S}_{0})
and axioms about actions, etc.

- Goal:
$\exists \mathbf{s}^{\prime} \mathbf{O n}\left(\mathbf{A}, \mathbf{B}, \mathbf{s}^{\prime}\right)$

Situation Calculus

- This approach is called the situation calculus.
- We axiomitize all our actions, then use a general theorem prover to prove that a situation exists in which our goal is true.
- The actions in the proof would comprise our plan.

What happens?

- We try to prove $\mathbf{O n}\left(\mathbf{A}, \mathbf{B}, \mathbf{s}^{\prime}\right)$
- Find axiom
$\forall \mathbf{x}, \mathbf{y}, \mathbf{s} \operatorname{Clear}(\mathbf{x}, \mathbf{s}) \wedge \operatorname{Clear}(\mathbf{y}, \mathbf{s})$ $\Rightarrow \mathbf{O n}(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\operatorname{Move}(\mathbf{x}, \mathbf{y}), \mathbf{s}))$
- By chaining, e.g., goal would be true if we could prove Clear(A,s) ^Clear(B,s).
- But both are true in \mathbf{S}_{0}, so we can conclude On(A,B,Result(Move(A,B), $\left.\mathbf{S}_{0}\right)$)
- We are done!
- We look in the proof and see only one action, Move(A,B), which is executed in situation S_{0}, so this is our plan.

Tougher Example: Same Initial World, Harder Goal

With Goal

$\exists s^{\prime} \mathrm{On}\left(\mathrm{A}, \mathrm{B}, \mathrm{s}^{\prime}\right) \wedge \mathrm{On}\left(\mathrm{B}, \mathrm{C}, \mathrm{s}^{\prime}\right)$

- KB:

On(A,Table, \mathbf{S}_{0})
On(B,C,S $\left.\mathbf{S}_{0}\right)$
On(C,Table, S_{0})
Clear(A,S \mathbf{S}_{0})
Clear(B,S \mathbf{S}_{0})
and axioms about actions, etc.
Goal:
$\exists s^{\prime} \mathrm{On}\left(\mathrm{A}, \mathrm{B}, \mathrm{s}^{\prime}\right) \wedge \mathrm{On}\left(\mathrm{B}, \mathrm{C}, \mathrm{s}^{\prime}\right)$
(Intuitively, really not harder: B already on C , and we just showed how to make A on B.)

The Frame Problem

- We have failed to express the fact that everything that isn't changed by an action stays the same.
- Can fix by adding frame axioms. E.g.:

```
\forall\mathbf{x,y,z,s}
Clear(x,s) }=>\mathrm{ Clear(x, Result(Paint(x,y),s))
```

...

- There are lots of these!
- Is this a big problem?

Suppose we try to prove the first subgoal, On(A,B,s'). Use same axiom
$\forall \mathbf{x}, \mathbf{y}, \mathrm{s} \operatorname{Clear}(\mathrm{x}, \mathrm{s}) \wedge \operatorname{Clear}(\mathrm{y}, \mathrm{s})$
$\Rightarrow \mathbf{O n}(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\operatorname{Move}(\mathbf{x}, \mathbf{y}), \mathbf{s}))$
Again, by chaining, we can conclude
On(A,B,Result(Move(A,B), $\left.\mathbf{S}_{0}\right)$).
Abbreviating $\operatorname{Result}\left(\operatorname{Move}(\mathbf{A}, \mathbf{B}), \mathbf{S}_{0}\right)$ as \mathbf{S}_{1}, we have On(A,B,S \mathbf{S}_{1}.
Substituting in our other subgoal makes that $\mathbf{O n}\left(\mathbf{B}, \mathbf{C}, \mathbf{S}_{1}\right)$. If this is true, we're done.
But we have no reason to believe this is true!
Sure, $\mathbf{O n}\left(\mathbf{B}, \mathbf{C}, \mathbf{S}_{0}\right)$, but how does the planner know this is still true, i.e., On(B,C,S$\left.)_{1}\right)$?
In fact, it doesn't, so it fails to find an answer!

Better Frame Axioms

- Can fix with neater formulation:

$$
\begin{aligned}
& \forall \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{s}, \mathbf{a} \\
& \operatorname{On}(\mathbf{x}, \mathbf{y}, \mathbf{s}) \wedge \neg(\mathbf{a}=\operatorname{Move}(\mathbf{x}, \mathbf{z}) \wedge \neg \mathbf{y}=\mathbf{z}) \\
& \quad \Rightarrow \operatorname{On}(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\mathbf{a}, \mathbf{s}))
\end{aligned}
$$

- Can combine with effect axioms to get successorstate axioms:

$$
\begin{aligned}
& \forall \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{s}, \mathbf{a} \\
& \text { On }(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\mathbf{a}, \mathbf{s})) \Leftrightarrow \\
& \quad \operatorname{On}(\mathbf{x}, \mathbf{y}, \mathbf{s}) \wedge \neg(\mathbf{a}=\operatorname{Move}(\mathbf{x}, \mathbf{z}) \wedge \neg \mathbf{y}=\mathbf{z}) \\
& \vee \operatorname{Clear}(\mathbf{x}, \mathbf{s}) \wedge \operatorname{Clear}(\mathbf{y}, \mathbf{s}) \wedge \mathbf{a}=\operatorname{Move}(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

Note How This Helps Our Example

- Want to prove

On(B,C,Result(Move(A,B), \mathbf{S}_{0})
given that $\mathbf{O n}\left(\mathbf{B}, \mathbf{C}, \mathbf{S}_{0}\right)$
Axiom says
$\mathbf{O n}(\mathbf{x}, \mathbf{y}, \operatorname{Result}(\mathbf{a}, \mathbf{s})) \Leftrightarrow$
$\operatorname{On}(x, y, s) \wedge \neg(a=\operatorname{Move}(x, z) \wedge \neg y=z)$
$\vee \operatorname{Clear}(\mathrm{x}, \mathrm{s}) \wedge \operatorname{Clear}(\mathrm{y}, \mathrm{s}) \wedge \mathbf{a}=\operatorname{Move}(\mathrm{x}, \mathrm{y})$

- So need to show
$\operatorname{On}\left(\mathbf{B}, \mathbf{C}, \mathbf{S}_{0}\right) \wedge \neg(\operatorname{Move}(\mathbf{A}, \mathbf{B})=\operatorname{Move}(\mathbf{B}, \mathbf{z}) \wedge \neg \mathbf{C}=\mathbf{z})$
The first conjunct is in the KB ; the second is true because the actions are clearly different.

