
Coping With Interactions

� A big problem with situation-based planning is coping with interacting
subgoals.

� E.g., suppose our goal were

On(A,B) ∧ On(B,C)

� Planning to achieve the first conjunct first is bad, as we will have to
undo it before achieving the second and redo it again afterwards.

� No matter how we plan, we must have some mechanism to detect such
planning conflicts.

� Or we will produce buggy or inefficient plans. (STRIPS did the latter.)

� Moreover, a situation-based planner can only find a solution by
blinding searching all possible orderings.

� In other words, divide-and-conquer among subgoals doesn't work: Can't
just plan for each and then slap the plans together.

� Called Sussman Anomaly.

Kinds of Plan-Space Planners
� Ways in which plans can be partial:

� Steps are specified, but there is no mention of their
order.

� I.e., plan steps are only partially ordered. (Such plans are
called a non-linear or partially-ordered plans.)

� Not every variable may be bound.

� I.e., the plan is not fully instantiated.

� Such planners are sometimes called 'least
commitment' planners.

� Plans might be specified 'abstractly', at some
coarse level of detail, then planned at successive
levels of refinement.

� Such planners are said to be hierarchical.

Partial Order Planning

Alan Bundy

School of Informatics

(Slides courtesy of Robert Wilensky)

Alternative:
Searching Plan Space

� Idea:

� suggest a partially specified plan

� incrementally refine the plan, until we have a complete
plan.

� Result might still be only partially specified plan,

� But each complete specification of it would be an
acceptable solution.

� In effect, we would be searching the space of
plans rather than of situations.

� Most planners today use some variant of this idea.

Simplest Example of Non-Linear
Plan

� If goal is On(A,B) ∧ On(C,D),

� where everything on table.

� can plan {Move(A,B),Move(C,D)}, i.e., a set
of steps without a specified order.

� Linearized plans would then be
Move(A,B) < Move(C,D)
and
Move(C,D) < Move(A,B)
where < indicates order.

A Formalization: Plans (or
'Task Networks')

� A set of steps
� A step is just an operator

� A set of variable binding constraints

� of the form v=x, where v is a variable of some plan step, and x is
either a constant or a variable of another plan step

� A set of ordering constraints

� e.g., S1 < S2, i.e., step S1 comes before step S2.

� A set of protection intervals

� e.g., state C must persist prior to step S and until after S is
completed.

� Alternatively, Si → Sj is a causal link, i.e., step Si establishes state
C, satisfying a precondition for step Sj.

C

Partially-Ordered Planning

� Solutions will be

� Complete, i.e., every precondition is achieved by a step

� Consistent, i.e., no conflicts in the order of steps or
binding of variables

� but may be partial, i.e., it may not be

� linear

� fully instantiated

� Every linearized, full-instantiation of complete
and consistent solution will also be a complete and
consistent solution.

Partially-Ordered Planning:
Basic Idea

� We'll keep using our STRIPS-style representation for
operators.

� We'll introduce a representation for partial plans.

� Start off with some minimal plan for a goal.

� Consider refining the plan.

� In doing so, consider repercussions of proposed refinement,

� looking out for possible conflicts.

� If we find a conflict, try to resolve by constraining the plan.

� If fail, back off and try another refinement.

� Keep going until the plan is complete.

Simple Example

� Start()
Add: On(A,Table) ∧ On(B,Table) ∧ On(C,Table) ∧

Clear(A) ∧ Clear(B) ∧ Clear(C)

� Finish()
 Pre: On(A,B) ∧ On(B,C)

� I.e., Start just sets up the initial state; Finish
requires the goal.

� Our initial plan or task network will be:

� Steps: {S1:Start(), S2:Finish()}

� Ordering constraints: {S1 < S2}

� Protection intervals: { }

Or, Graphically

Start

On(A,Table) On(B,Table) On(C,Table)

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Clear(A)

Clear(B) Clear(C)

Constrain Order Now, select an operator to fulfill
a precondition. (Can choose from
already scheduled steps, or
propose new one.)

A Nice Hack

� We'll Use (pseudo) operators Start and Finish,
precluding the need for goals, initial states, etc.

� Start will always have no preconditions, and Add
the initial state predications.

� Finish will always have the goal conjuncts as its
preconditions (and do nothing).

Or, Graphically

Start

Finish
Constrain Order

Immediately add Adds of Start
and Pre of Finish.

Example (con't): Propose a plan
to achieve a precondition

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Removes

Constrain Order

This threatens some states, but
nothing depends on them yet.

Action→State→Action entails
an ordering link between the
actions.

Example (con't): Pick another
unmet precondition to achieve

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Move(B,C)

Okay so far, plan for
preconditions of new step.

Removes

Constrain Order

Example (con't): Propose a plan
to achieve a precondition

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Removes

Constrain Order We consider a step that fulfills
some unmet precondition.

Now consider its implications.

Example (con't): Again, this time
using an existing step.

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Clear(B) becomes protected, and
is already threatened, but this is
a false alarm.

Removes

Constrain Order

A Protected State is Threatened

Protect from beginning until end of action

Causes

Move(A,B)

Start
Clear(B)

Move(B,C)

Removes

Constrain Order

Resolving Protection
Violations

Protect from beginning until end of action

Causes

Step3

Step1

Step2

Removes

Constrain Order

Conflict

State Step3

Step1

Step2

Demotion

State

Example (con't): Pick another
unmet precondition to achieve

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Move(B,C)

Now the threat to Clear(B) is
real, since we don't know when it
will happen wrt Move(B,C).Removes

Constrain Order

Resolving Protection
Violations

Protect from beginning until end of action

Causes

Step3

Step1

Step2

Removes

Constrain Order

Conflict

State

Back to Our Example …

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Move(B,C)

Let's highlight the steps involved
in the threat.

Removes

Constrain Order

Example (con't): Resolve threat by
promotion

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Move(B,C)

Removes

Constrain Order

Whole plan is just Start(), then
Move(B,C), then Move(A,B),
then Finish().

Resolving Protection
Violations

Protect from beginning until end of action

Causes

Step3

Step1

Step2

Removes

Constrain Order

Conflict

State Step3

Step1

Step2

Demotion

State Step3

Step1

Step2

Promotion

State

Example (con't): Resolve threat by
???

Finish

On(A,B) On(B,C)

Protect from beginning until end of action

Causes

Move(A,B)

Start

On(A,Table) On(B,Table) On(C,Table)

Clear(A)

Clear(B) Clear(C)

Move(B,C)

Removes

Constrain Order
Consider demotion or promotion of
the threatening step.

General Partial Planning
Algorithm

� Make initial plan

� Until no more or fail,

� Select subgoal of step

� Choose operator (with desired effect)

� by considering currently scheduled or new plan steps

� updating plan, noting threatened states, bindings

� Resolve any threats

� If real, promote, demote, or fail

� This is a complete planner!

Point

� We dealt with an interaction between
goals without any backtracking.

� We won't always be able to avoid
backtracking this way, but we
generally can avoid much of it.

Partial Planning

� Is provably correct and complete.

� Planning is hard.

� With just simple STRIPS-like operators, planning is not
decidable.

� But it is partially decidable. (I.e., if there is a plan, we
can find it.)

� Finding a findable plan is NP-hard.

� Actually, just determining whether a state is necessarily true in
a partial planner whose action representation is powerful
enough to represent conditional actions, dependency of effects
on states, or derived side-effects in NP-hard.

� So, if planning is so hard, why is it so easy?

