

AI2Bh Module 4

Bundy

7 AI2Bh Module

Possible World Semantics

- There are many possible worlds, with different facts true in each: w ⊨ φ. There is a distinguished, current world, e.g. w₀. Some worlds are accessible (w₁ ≡ w₂)) from other worlds, some are not.
- $w_0 \models \Box \varphi$ iff $\forall w. w_0 \equiv w \Rightarrow w \models \varphi$.
- $w_0 \models \Diamond \varphi$ iff $\exists w. w_0 \equiv w \land w \models \varphi$.
- $w_0 \models \mathbb{K}_A \varphi$ iff $\forall w. w_0 \equiv_A w \Rightarrow w \models \varphi$.

Establishing Formulae via Semantics

Suppose:	$w_0 \models \mathbf{K}_A \varphi$ and $\varphi \models \psi$
by meaning \mathbf{K}_A :	$\forall w. \ w_0 \equiv_A w \Rightarrow w \vDash \varphi$
by meaning \models :	$\forall w. \ w_0 \equiv_A w \Rightarrow w \vDash \psi$
by meaning \mathbf{K}_{A} :	$w_0 \models \mathbf{K}_A \psi$
discharging assumption:	if $\mathbf{K}_{A} \varphi$ and $\varphi \vDash \psi$ then \mathbf{K}_{A}

Example of Possible Worlds

- There are 3 cards: King, Queen and Jack.
- There are two agents: A and B.
- Each agent has one card and there is one face down on the table.
- Agent A has the King.

Alan Bundy

- 6 AI2Bh Module 4

Alan Bundy

8 AI2Bh Module 4

 ψ

- Agent A considers two possible worlds: Agent B has the Queen: w_Q. Agent B has the Jack: w_J.
- One of these is the actual world.

Mid-Lecture Exercise

- Represent each of the following statements as a modal logic formula.
 - 1. Agent X knows that every one has a name.
 - 2. Agent X knows what every one's name is.
 - where Name(p, n) means that n is the name of p.
- In what way do these two formulae differ?
- Does either of them imply the other?

- 1. $\mathbf{K}_X \forall p. \exists n. Name(p, n)$ 2. $\forall p. \exists n. | \mathbf{K}_X | Name(p, n)$
- They differ only in whether the modal operator appears before or after the quantifiers.
- 2 implies 1, but not vice versa.

Solution Continued

Alan Bundy

10 AI2Bh Module 4

Alan Bundy

- 12 AI2Bh Module 4

	Current World	Accessible World
1	K_X $\forall p. \exists n. Name(p, n)$	$\forall p. \exists n. Name(p, n)$
		$Name(p_1, n_1),$
		$Name(p_2, n_2),$
2	$\forall p. \exists n. \mathbf{K}_X Name(p, n)$	
	$\mathbf{K}_X Name(p_1, n_1'),$	$Name(p_1, n_1'),$
	$\mathbf{K}_X Name(p_2, n_2'),$	$Name(p_2, n'_2),$

Property K: What An Agent Infers It Knows

Suppose:

by meaning K_A : Suppose: by meaning $\left[\mathsf{K}_{A}\right]$: $w_{0} \models \left[\mathsf{K}_{A}\right]\psi$

 $w_0 \models \mathsf{K}_A \ (\varphi \to \psi)$ $\forall w. \ w_0 \equiv_A w \Rightarrow w \vDash (\varphi \to \psi)$ $w_0 \models \mathsf{K}_A \varphi$ by meaning \mathbf{K}_A : $\forall w. w_0 \equiv_A w \Rightarrow w \vDash \varphi$ by modus ponens: $\forall w. w_0 \equiv_A w \Rightarrow w \vDash \psi$ discharging assumptions: $[\mathsf{K}_A](\varphi \to \psi) \to ([\mathsf{K}_A]\varphi \to [\mathsf{K}_A]\psi)$

Property K and Omniscience

Property K: An agent knows it can infer.

Infallible: Agent will never make mistakes during reasoning.

Exhaustive: Agent will draw all possible inferences.

Neither of these is realistic in real agents.

However, adopt as first approximation.

Reflexive: $\forall w. w \equiv_A w$

Symmetric: $\forall w_1. \forall w_2. w_1 \equiv_A w_2 \Rightarrow w_2 \equiv_A w_1$

Transitive:

Suppose:

 $\forall w_1. \forall w_2. \forall w_3. w_1 \equiv_A w_2 \land w_2 \equiv_A w_3 \Rightarrow w_1 \equiv_A w_3$

Property 4: An Agent Knows What It Knows

1 Bundy

11	0 11
by meaning K_A :	$(*) \; \forall w. \; w_0 \equiv_{\mathbb{A}}$
Suppose:	$w_0 \equiv_A w'$
Suppose:	$w' \equiv_A w$
by transitivity of \equiv_A :	$w_0 \equiv_A w$
by (*) :	$w\vDash\varphi$
discharging assumption:	$\forall w. \ w' \equiv_A$
by meaning $\left[K_{A}\right]$:	$w' \vDash K_A$
discharging assumption:	$\forall w. \ w_0 \equiv A$
by meaning \mathbf{K}_A :	$w_0 \models K_A$
discharging assumption:	$K_A \varphi \to$

 $w_0 \models \mathsf{K}_A \varphi$ $\exists_A w \Rightarrow w \vDash \varphi$ $A w \Rightarrow w \vDash \varphi$ φ $a_A w \Rightarrow w \models \mathsf{K}_A \varphi$ $\mathsf{K}_A \varphi$ \rightarrow $\mathbf{K}_A \mathbf{K}_A \varphi$

Property T: Anything An Agent Knows is True

Alan Bundy

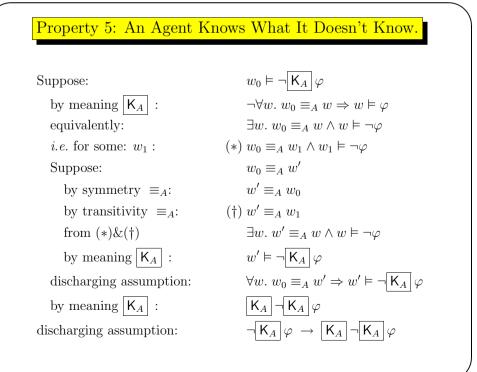
– 14 AI2Bh Module 4

Alan Bundy

– 16 AI2Bh Module 4

 $w_0 \models \mathbf{K}_A \varphi$ Suppose: by meaning $[\mathsf{K}_A]$: $\forall w. w_0 \equiv_A w \Rightarrow w \vDash \varphi$ since \equiv_A is reflexive: $w_0 \models \varphi$ $\mathsf{K}_A \varphi \to \varphi$ discharging assumption:

Speak of *knowledge* when property \mathbf{T} holds and *belief* when it fails.



17 AI2Bh Module 4

- \bullet Property ${\bf K}$ true in all modal logics.
- If \equiv_A reflexive then **T** also true and logic called **KT**.
- If \equiv_A reflexive and transitive then **4** also true and logic called **S4**.
- If ≡_A reflexive, symmetric and transitive then 5 also true and logic called S5.

Alan Bundy

Mairi's Beliefs:

$$\label{eq:K_M} \begin{split} \hline \mathbf{K}_M & kissed(P_1,P_2) \Rightarrow affair(P_1,P_2) \\ \hline \mathbf{K}_M & kissed(jock,karen) \end{split}$$

Differences in Their Beliefs

Jock's Beliefs:

$$\begin{split} \hline \mathbf{K}_{J} \ kissed(P_{1}, P_{2}) &\land love(P_{1}, P_{2}) \Rightarrow affair(P_{1}, P_{2}) \\ \hline \mathbf{K}_{J} \ kissed(jock, karen) \\ \hline \mathbf{K}_{J} \ \neg loves(jock, karen) \end{split}$$

since someone believes something that is false.

logic,

19 AI2Bh Module 4

Conclusion

• Modal logics can be used to represent time, obligation and knowledge.

We focus on knowledge.

- Given meaning via possible world semantics. Accessibility defined by \equiv_A .
- Properties **K**, **T**, **4** and **5**, depend on properties of \equiv_A : reflexive, symmetric, transitive.
- Problem of omniscience because of **K**.
- Family of logics depending which properties adopted. For instance, for belief reject **T**.
- Can use logic to account for differences in knowledge and belief.

Alan Bundy

 $\mathbf{21}$

AI2Bh Module 4