

- Introduced to formalise modalities, e.g. necessity and possibility.
- Syntax:
$\square \varphi$ means, φ is necessarily true
$\diamond \varphi$ means, φ is possibly true

Applications of Modalities

Time:
$\square \varphi$ means, φ will be true from now on.
$\diamond \varphi$ means, φ will eventually be true.

Deontic:
$\square \varphi$ means, φ ought to be true.
$\diamond \varphi$ means, φ is permissible.

Knowledge: $\mathrm{K}_{A} \varphi$ means, A knows that φ.
Example Modal Formulae
$\mathrm{K}_{A} \mathrm{~K}_{B} \varphi$ means, A knows that B knows that φ $\exists x . \mathrm{K}_{A} \varphi(x)$ means, for some x, A knows that $\varphi(x)$ $\overleftarrow{\mathrm{K}_{A}} \exists x . \varphi(x)$ means, A knows that, for some $x, \varphi(x)$

Suppose $\varphi(x)$ means, x is the name of the oldest person in Edinburgh, and you are A.

- There are many possible worlds,
with different facts true in each: $w \vDash \varphi$.
There is a distinguished, current world, e.g. w_{0}. Some worlds are accessible $\left(w_{1} \equiv w_{2}\right)$) from other worlds, some are not.
- $w_{0} \vDash \square \varphi$ iff $\forall w . w_{0} \equiv w \Rightarrow w \vDash \varphi$.
- $w_{0} \vDash \Delta \varphi$ iff $\exists w . w_{0} \equiv w \wedge w \vDash \varphi$.
- $w_{0} \vDash \mathrm{~K}_{A} \varphi$ iff $\forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \varphi$.

Establishing Formulae via Semantics

$w_{0} \vDash \widehat{\mathrm{~K}_{A}} \varphi$ and $\varphi \vDash \psi$
by meaning $\overline{\mathrm{K}_{A}}: \quad \forall w \cdot w_{0} \equiv_{A} w \Rightarrow w \vDash \varphi$
by meaning \vDash : $\quad \forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \psi$
by meaning $\overline{\mathrm{K}_{A}}: \quad w_{0} \vDash \mathrm{~K}_{A} \psi$
discharging assumption: if $\mathrm{K}_{A} \varphi$ and $\varphi \vDash \psi$ then $\widehat{\mathrm{K}_{A}} \psi$

- There are 3 cards: King, Queen and Jack.
- There are two agents: A and B.
- Each agent has one card and there is one face down on the table.
- Agent A has the King.
- Agent A considers two possible worlds:

Agent B has the Queen: w_{Q}.
Agent B has the Jack: w_{J}.

- One of these is the actual world.

Mid-Lecture Exercise

- Represent each of the following statements as a modal logic formula.

1. Agent X knows that everyone has a name.
2. Agent X knows what everyone's name is.
where $\operatorname{Name}(p, n)$ means that n is the name of p.

- In what way do these two formulae differ?
- Does either of them imply the other?

Solution to Exercise

-1. $\mathrm{K}_{X} \forall p . \exists n . \operatorname{Name}(p, n)$
2. $\forall p . \exists n . \mathrm{K}_{X} \backslash \operatorname{Name}(p, n)$

- They differ only in whether the modal operator appears before or after the quantifiers.
- 2 implies 1 , but not vice versa.

Properties of $\equiv{ }_{A}$

Reflexive: $\forall w . w \equiv_{A} w$
Symmetric: $\forall w_{1} \cdot \forall w_{2} . w_{1} \equiv_{A} w_{2} \Rightarrow w_{2} \equiv_{A} w_{1}$

Transitive:

$\forall w_{1} . \forall w_{2} . \forall w_{3} . w_{1} \equiv{ }_{A} w_{2} \wedge w_{2} \equiv{ }_{A} w_{3} \Rightarrow w_{1} \equiv_{A} w_{3}$

Property 4: An Agent Knows What It Knows

Suppose:

$$
w_{0} \vDash \mathrm{~K}_{A} \varphi
$$

by meaning K_{A}
$(*) \forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \varphi$
Suppose:
$w_{0} \equiv{ }_{A} w^{\prime}$
$w^{\prime} \equiv_{A} w$
$w_{0} \equiv{ }_{A} w$
$w \vDash \varphi$
$\forall w . w^{\prime} \equiv_{A} w \Rightarrow w \vDash \varphi$
$w^{\prime} \vDash \boxed{\mathrm{K}_{A}} \varphi$
$\forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \mathrm{~K}_{A} \varphi$
$w_{0} \vDash \mathrm{~K}_{A} \rightarrow \varphi$
$\mathrm{K}_{A} \varphi \rightarrow \mathrm{~K}_{A} \mathrm{~K}_{A} \varphi$

Suppose:
by meaning K_{A} :
since \equiv_{A} is reflexive:

$$
w_{0} \vDash \mathrm{~K}_{A} \varphi
$$

$\forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \varphi$
discharging assumption:

$$
\mathrm{K}_{A} \varphi \rightarrow \varphi
$$

Speak of knowledge when property \mathbf{T} holds and belief when it fails.

$$
w_{0} \vDash \varphi
$$

Property T: Anything An Agent Knows is True
.

Property 5: An Agent Knows What It Doesn’t Know.

Suppose:
by meaning K_{A} :
equivalently:
i.e. for some: w_{1} :

Suppose:
by symmetry \equiv_{A} :
by transitivity \equiv_{A} :
from $(*) \&(\dagger)$
by meaning K_{A} :
discharging assumption:
by meaning K_{A} :
discharging assumption:

$$
w_{0} \vDash-\sqrt{\mathrm{K}_{A}} \varphi
$$

$\neg \forall w . w_{0} \equiv_{A} w \Rightarrow w \vDash \varphi$
$\exists w . w_{0} \equiv_{A} w \wedge w \vDash \neg \varphi$
$(*) w_{0} \equiv_{A} w_{1} \wedge w_{1} \vDash \neg \varphi$
$w_{0} \equiv{ }_{A} w^{\prime}$
$w^{\prime} \equiv_{A} w_{0}$
(\dagger) $w^{\prime} \equiv_{A} w_{1}$
$\exists w . w^{\prime} \equiv_{A} w \wedge w \vDash \neg \varphi$

$$
w^{\prime} \vDash \neg \mathrm{K}_{A} \varphi
$$

$\forall w . w_{0} \equiv_{A} w^{\prime} \Rightarrow w^{\prime} \vDash \neg \mathrm{K}_{A} \varphi$
$\mathrm{K}_{A}-\mathrm{K}_{A} \varphi$
$\neg \mathrm{K}_{A} \varphi \rightarrow \mathrm{~K}_{A}-\mathrm{K}_{A} \varphi$

A Family of Model Logics

- Property \mathbf{K} true in all modal logics.
- If \equiv_{A} reflexive then \mathbf{T} also true and logic called $\mathbf{K T}$.
- If \equiv_{A} reflexive and transitive then 4 also true and logic called S4.
- If \equiv_{A} reflexive, symmetric and transitive then $\mathbf{5}$ also true and logic called S5.

Differences in Their Beliefs

Mairi's Beliefs:

$$
\begin{aligned}
& \mathrm{K}_{M} \operatorname{kissed}\left(P_{1}, P_{2}\right) \Rightarrow \operatorname{affair}\left(P_{1}, P_{2}\right) \\
& \mathrm{K}_{M} \operatorname{kissed}(\text { jock }, \text { karen })
\end{aligned}
$$

Jock's Beliefs:

$\mathrm{K}_{J} \operatorname{kissed}\left(P_{1}, P_{2}\right) \wedge \operatorname{love}\left(P_{1}, P_{2}\right) \Rightarrow \operatorname{affair}\left(P_{1}, P_{2}\right)$
K_{J} kissed(jock, karen)
$\mathrm{K}_{J} \neg \operatorname{loves}($ jock, karen $)$

- Modal logics can be used to represent time, obligation and knowledge.
We focus on knowledge.
- Given meaning via possible world semantics.

Accessibility defined by \equiv_{A}.

- Properties K, T, 4 and 5,
depend on properties of \equiv_{A} : reflexive, symmetric, transitive.
- Problem of omniscience because of \mathbf{K}.
- Family of logics depending which properties adopted.

For instance, for belief reject T.

- Can use logic to account for differences in knowledge and belief.

