

Abilities of Agents

- Crane agent can move gold, but cannot sense.
- Dog agent can sense, but cannot move gold.
- They need to cooperate to win game.
- Cooperation requires communication.
action: Forward $\left(a g, s q_{1}, s q_{2}\right)$ precondition: $\begin{aligned} & A t\left(a g, s q_{1}\right) \wedge \operatorname{Heading}(a g, \operatorname{dir}) \wedge \\ & N \operatorname{ext}\left(s q_{1}, \operatorname{dir}, s q_{2}\right) \wedge O K\left(s q_{2}\right)\end{aligned}$ add: $\operatorname{At}\left(a g, s q_{2}\right)$
delete: $\operatorname{At}\left(a g, s q_{1}\right)$
action: $\operatorname{Right}\left(a g, d i r_{1}, d i r_{2}\right)$
precondition:Ninety $\left(\operatorname{dir}_{1}, \operatorname{dir}_{2}\right) \wedge \operatorname{Heading}\left(a g, \operatorname{dir}_{1}\right)$
add: Heading $\left(a g, d i r_{2}\right)$
delete: Heading $\left(a g, d i r_{1}\right)$

Inform

- $\operatorname{Inform}_{S, H}(\varphi)$ means S informs H of φ.
- Assume speaker is honest: precondition is $\mathrm{K}_{S} \varphi$.
- Assume hearer is trusting: effect is $\mathrm{K}_{H} \varphi$.
- Also $\mathrm{K}_{S} \mathrm{~K}_{H} \varphi, \mathrm{~K}_{H} \mathrm{~K}_{S} \mathrm{~K}_{H} \varphi, \ldots$ represent via common knowledge: $\mathrm{C}_{\{S, H\}} \varphi$.
- Example: $\operatorname{Inform}_{\text {Dog,Crane }}(S(\langle 2,1\rangle))$

Dog informs Crane that there is stench in square $\langle 2,1\rangle$.

Inform Action

Can represent as sTRIPS-like planning action.

$$
\begin{aligned}
& \text { action: }: \operatorname{Inform}_{S, H}(\varphi) \\
& \text { precondition }: \mathrm{K}_{S} \varphi \\
& \text { add }: \mathrm{C}_{\{S, H\}} \varphi \\
& \text { delete }:
\end{aligned}
$$

Note: assumes all agents have synchronised clocks.

Mid-Lecture Exercise

Suppose there are three agents: A, B, C, and a message φ. Suppose $\mathrm{K}_{A} \varphi$. Can you use Inform to form a plan to achieve $\mathrm{C}_{\{A, B, C\}} \varphi$?

Solution to Exercise

No.

It is possible to form plans to achieve all the two-way combinations of common knowledge, i.e. $\mathrm{C}_{\{A, B\}} \varphi$, $\mathrm{C}_{\{B, C\}} \varphi$ and $\mathrm{C}_{\{C, A\}} \varphi$, but not the three-way combination $\mathrm{C}_{\{A, B, C\}} \varphi$. For instance, the plan
$\operatorname{Inform}_{A, B}(\varphi), \operatorname{Inform}_{B, C}(\varphi)$ achieves $\mathrm{C}_{\{B, C\}} \varphi$.
However, the effect of $\operatorname{Inform}_{S, H}(\varphi)$ is only to add the two-way common knowledge $\mathrm{C}_{\{S, H\}} \varphi$; never a three-way version.

Two Types of Query

Yes/No Query: Asks only to confirm/deny fact.
Yes/No Example: Query Crane, Dog $(S(\langle 2,1\rangle))$.
Crane asks Dog whether there is a stench in square $\langle 2,1\rangle$.

Wh Query: Asks to instantiate a variable. Who? What? Which? When? How? etc.

Wh Example:
Query $_{\text {Crane, Dog }}\left(? s q_{2} . \operatorname{Next}\left(s q_{1}, d i r, s q_{2}\right) \wedge O K\left(s q_{2}\right)\right)$. Crane asks Dog which squares adjacent to $s q_{1}$ are safe.

Yes/No Query Action

Can represent as sTRIPs-like planning action.

$$
\begin{aligned}
& \text { action:Query }{ }_{S, H}(\varphi) \\
& \text { precondition: } \begin{aligned}
\mathrm{K}_{S} & \left(\mathrm{~K}_{H} \varphi \vee \mathrm{~K}_{H} \neg \varphi\right) \\
\text { effect: } & \mathrm{K}_{H}\left(\left(\mathrm{~K}_{S} \varphi \vee \mathrm{~K}_{S} \neg \varphi\right) \rightarrow \operatorname{happy}(S)\right)
\end{aligned}
\end{aligned}
$$

Note: effect no longer simple add and delete lists.

Request

- Request ${ }_{S, H}(\varphi)$ means S asks H to carry out action φ.
- Repeat trick of linking performance of action to happiness of speaker.
- Example: Request $_{\text {Crane,Dog }}(\operatorname{Move}(\operatorname{Dog},\langle 1,1\rangle,\langle 1,2\rangle))$

Crane asks Dog to move from square $\langle 1,1\rangle$ to square $\langle 1,2\rangle$.

Can represent as sTRIPS-like planning action.

$$
\begin{gathered}
\text { action: Query }{ }_{S, H}(? x \cdot \varphi(x)) \\
\text { precondition: } \mathrm{K}_{S} \exists x \mathrm{~K}_{H} \varphi(x) \\
\text { effect: } \mathrm{K}_{H}\left(\exists x \mathrm{~K}_{S} \varphi(x) \rightarrow \operatorname{happy}(S)\right)
\end{gathered}
$$

Request Action

Can represent as sTRIPS-like planning action.

```
    action:Request }\mp@subsup{\mp@code{S,H}}{(act)}{
precondition:
            effect:\}\mp@subsup{\textrm{K}}{H}{}(\existsi.T(act,i)->happy(S)
```

Multi-Agent Plan

- Initial position and heading of Crane given by:

$$
\text { At }(\text { Crane, }\langle 1,1\rangle) \wedge \text { Heading }(\text { Crane }, \text { West })
$$

- Crane asks Dog which adjacent squares are safe:

Query $_{\text {Crane, Dog }}\left(? s q_{2} . \operatorname{Next}\left(\langle 1,1\rangle, \operatorname{dir}, s q_{2}\right) \wedge O K\left(s q_{2}\right)\right)$

- Dog informs Crane of an adjacent square which is safe:

$$
\operatorname{Inform}_{\text {Dog }, \text { Crane }}(N \operatorname{ext}(\langle 1,1\rangle, N \text { orth, }\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle))
$$

- Crane then turns in that direction:
Right(Crane, West, North)
- And moves forward to safe square:

$$
\text { Forward }(\text { Crane, }\langle 1,1\rangle,\langle 1,2\rangle)
$$

Conclusion

- Model communication as exchange of modal formulae.
- Use modal logic of knowledge to represent preconditions and effects.
- Three types of communication act: inform, query and request.
- Use plan formation actions to represent each of these.
- Can then combine with regular actions to form multi-agent plans.
- Requires modal inference.

Modal Inference Required

- Effect of $\operatorname{Inform}_{\text {Dog,Crane }}(\operatorname{Next}(\langle 1,1\rangle, \operatorname{North},\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle))$ is:

$$
\mathrm{C}_{\{\text {Dog,Crane }\}} \operatorname{Next}(\langle 1,1\rangle, \text { North, }\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle)
$$

- But precondition of Forward(Crane, $\langle 1,1\rangle,\langle 1,2\rangle)$ requires:

$$
\operatorname{Next}(\langle 1,1\rangle, \operatorname{North},\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle)
$$

- Must use definition
$\overline{\mathrm{C}_{\text {set }}} \varphi \Leftrightarrow \mathrm{E}_{\text {set }} \varphi \wedge \mathrm{E}_{\text {set }} \mathrm{E}_{\text {set }} \varphi \wedge \mathrm{E}_{\text {set }}$ E $\mathrm{E}_{\text {set }} \overline{\mathrm{E}_{\text {set }}} \varphi \wedge \ldots$ to infer:

$$
\mathrm{E}_{\{\text {Dog }, \text { Crane }\}} N \operatorname{ext}(\langle 1,1\rangle, \text { North, }\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle)
$$

- And definition $\mathrm{E}_{\{A, B, C, \ldots\}} \varphi \Leftrightarrow \mathrm{K}_{A} \varphi \wedge \mathrm{~K}_{B} \varphi \wedge \mathrm{~K}_{C} \varphi \wedge \ldots$ to infer:

$$
\mathrm{K}_{\text {Crane }} \operatorname{Next}(\langle 1,1\rangle, \text { North, }\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle)
$$

- Then property $\mathbf{T}\left(\widehat{\mathrm{K}_{A}} \varphi \rightarrow \varphi\right)$ to infer:

$$
\operatorname{Next}(\langle 1,1\rangle, \operatorname{North},\langle 1,2\rangle) \wedge O K(\langle 1,2\rangle)
$$

