
AI2Bh Planning

Michael Fourman
Revised by Alan Bundy

May 12, 2004

In which we model action and change. Actions are operations that take us from one

situation to another. We start in some initial situation, with the goal of reaching another

situation with some desirable properties. A plan is a sequence of actions that will take

us from the initial situation to a goal situation.

Blocks World

We use examples from the Blocks World. A number of blocks (imagine they are wooden cubes) may
sit on the table, or be stacked in towers, one on another, or be held in the hand. (There is only one
hand.) A situation is a particular configuration of blocks, some on the table, some possibly stacked
on others, and possibly one in the hand.

A configuration can be specified by giving the truth values of a number of predicates:

ontable(a) Is block a on the table?

on(a,b) Is block a on block b?

handempty Is the hand empty?

holding(a) Is the hand holding block a?

We say a block is clear if it is not in the hand, and no other block is stacked on top of it. The
possible actions, and the circumstances in which they can be performed are:

pickup(a) Pickup a, which is clear and on the table, in the hand,

which is empty.

putdown(a) Put a, which is in the hand, on the table.

stack(a,b) Place a, which is in the hand, on b, which is clear.

unstack(a,b) Pick up a, which is clear, and stacked on b, in the hand,

which is empty.

1



School of Informatics, University of Edinburgh AI2

After performing an action we can observe its effects:

pickup(a) Afterwards, the hand is holding a, which is neither clear

nor on the table.

putdown(a) Afterwards, the hand is empty, a is clear, and on the table.

stack(a,b) Afterwards, a, which is clear, and not in the hand, is on b,

which is not clear; the hand is empty.

unstack(a,b) Afterwards, a, which is not clear, is in the hand,

which is not empty, and not on b, which is clear.

Situation Calculus

The Situation Calculus uses first-order predicate logic to reason about situations and actions. In the
situation calculus, we reify situations and actions, that is we treat them as objects we can reason
about. This means that, as well as representing the objects, functions and relations of the world,
using constants, functions and relations, we introduce types to represent situations and actions,
together with a fundamental operation

Result : Action× Situation −→ Situation

The result of performing an action in a given situation is a new situation.
In order to express the assertion that some relation holds in a given situation, we add a situation

parameter to each atomic assertion about the world. For example, in place of on(a,b), we use
on(a,b,s) meaning, a is stacked on b, in situation s.
If ϕ is a logical formula expressing some assertion about the world, in the language with-

out situation variables, we write ϕ(s) for the result of adding the situation parameter, s, to
each atomic formula occurring in ϕ. This gives the formula in situation calculus that expresses
ϕ holds in situation s.
For example, if the formula, goal, is true only in goal situations, then the situation calculus

formula goal(s) expresses the fact that s is a goal situation.

Actions

In the situation calculus, we define an action by axiomatising the relationship between an original
situation and the situation that results from performing the action.

2



School of Informatics, University of Edinburgh AI2

Effect axioms Each action is axiomatised: the result of performing an action, A, in a situation
satisfying A’s preconditions, is a situation including A’s effects.

ontable(x, s)

∧ clear(x, s)

∧ handempty(s)

→

holding(x, Result(pickup(x), s))

∧ ¬clear(x, Result(pickup(x), s))

∧ ¬handempty(Result(pickup(x), s))

∧ ¬ontable(x, Result(pickup(x), s))

Frame axioms In addition to specifying an action’s effects, saying which fluents it changes, we
also need to stipulate that it does not affect other fluents. It is simpler to list all the actions that
can change a given fluent, than to exhaustively enumerate all the fluents that are unchanged by
each action. For example, no action other than pickup(x) can remove a block, x, from the table:

ontable(x, s) ∧ a 6= pickup(x)→ ontable(x, Result(a, s)

Goal-directed reasoning

The planning problem can be formalised in the situation calculus. Given predicates, init, and
goal, specifying initial and goal states, we postulate an initial situation, s0, such that init(s0),
and search for a term s satisfying goal(s).

STRIPS

STRIPS is a simple, but enduring, representation for simple planning problems. A situation, also
called a state, is identified with the values of a finite number of boolean fluents. Fluents are boolean
state variables whose values can be changed by actions. A state, or situation, is characterised by
the set of fluents true in that state. If we start from a predicate calculus representation, each atomic
sentence (ie atomic formula without free variables) gives a fluent. For example, in a blocks world
with three blocks, a, b, c, we have sixteen fluents: nine of the form on(x, y), three each of the forms
ontable(x), and holding(x),and one handempty.
Actions are represented as operations that change the set of true fluents, by adding or deleting

items. Each action has a precondition — that certain fluents must be true before the action can be
performed. In the blocks world, we can represent the pickup action, as follows:

action:pickup(x)

precondition:ontable(x), clear(x), handempty

add:holding(x)

remove:ontable(x), clear(x), handempty

In this representation, the frame problem is dealt with operationally: unless an action explicitly
changes a fluent, it doesn’t change.

3



School of Informatics, University of Edinburgh AI2

Propositional Planning

Formulae of propositional logic, using the fluents as propositional letters, correspond to sets of
states.

on(b,c) ∧ ontable(c)

represents the set of the three states in which b is on c, which is on the table — a may be in the
hand, on the table, or on b1.
We consider two propositional representations of the planning problem – corresponding to the

STRIPS and situation calculus approaches.

Propositional STRIPS Planning

We see how to use the propositional representation to construct a formula representing the set of
states reachable in n steps from an initial state. First, if ϕ represents some set of states, and A is
an action, we construct a Quantified Boolean Formula (QBF)2, ϕ 〈A〉, representing the set of states
that can be reached from ϕ by performing the action A once.
Take the pickup(a) action as an example. The states in ϕ for which the preconditions of the

action are satisfied is given by

ϕ ∧ ontable(a) ∧ clear(a) ∧ handempty

Call these the activated states.
The action may change the values of the four propositional variables

ontable(a), holding, clear(a), handempty.

We use existential quantification to give a representation for the set of states that can be obtained
from one of the activated states by suitably changing the values of these four propositional variables.

∃ holding, ontable(a), clear(a), handempty.

ϕ ∧ ontable(a) ∧ clear(a) ∧ handempty

Propositionalvariables range over boolean values. So, this is just a shorthand for enumerating
the disjunction resulting from substituting in the body,

ϕ ∧ ontable(a) ∧ clear(a) ∧ handempty

the sixteen possible combinations of values for these four propositional variables.
Finally, we express propositionally the effects of the action

holding(a) ∧ ¬ ontable(a) ∧ ¬ clear(a) ∧ ¬ handempty

Adding this constraint gives the final expression for ϕ 〈A〉:
(

∃ holding, ontable(a), clear(a), handempty.

ϕ ∧ ontable(a) ∧ clear(a) ∧ handempty

)

∧
holding(a) ∧ ¬ ontable(a) ∧ ¬ clear(a) ∧ ¬ handempty

1Formally, there are other possibilities, but these are not reachable by any sequence of actions from any concretely

realisable state. For example, formally, a might also be on c.
2See appendix.

4



School of Informatics, University of Edinburgh AI2

The whole thus represents the states reachable from states in ϕ by performing a single pickup(a)
action. By performing this computation for each action, and forming the disjunction of the results,
we can compute all states reachable from ϕ in one step.
Computationally efficient representations of propositional formulae allow us to develop planning

algorithms that iterates this computation of sets of states to implement a form of parallel breadth-
first search.

Propositional representation of situation calculus

Another, highly successful, approach to planning is to code a situation calculus formulation propo-
sitionally. We represent the planning problem as the problem of satisfying some complex set of
propositional constraints.
Once more, we use the notation of predicate logic, but intend that each atomic sentence be

treated as separate propositional letter. We model time as a discrete series of instants, and identify
situations with times, t. Instead of treating actions as operations on situations, we introduce action
predicates, action(t), (one for each fully parametrised action) whose intended meaning is that action
is performed on the situation at time t. Its effects will yield the situation at time t+ 1.
The idea is to write a set of propositional constraints such that any satisfying valuation provides

a solution to the planning problem. Knowing which of the predicates, action(t), is true for a given
time t tells us which action to perform at time t.
For sequential planning we have axioms to ensure that only one action is performed at each

time.
action1(t) ∧ action2(t)→ action1 = action2

Parallel planning, which we will not discuss, allows more than one action to be performed concur-
rently.
We also add axioms to represent the correct operation of each action. We again use the pickup

action from blocks world example to illustrate the idea.

Preconditions An action can only be performed if its preconditions hold.

pickup(x, t)→ ontable(x, t) ∧ clear(x, t) ∧ handempty(t)

Effects When an action is performed, it causes its effects.

pickup(x, t)→
¬ontable(x, t+ 1) ∧ ¬clear(x, t+ 1) ∧ ¬handempty(x, t+ 1) ∧ holding(x, t+ 1)

Frame axioms A predicate can only be changed by specified actions.

pickup(x, t) ∨ putdown(x, t) ∨ (ontable(x, t+ 1)↔ ontable(x, t))

A model for the axioms that also satisfies, for example, init(0) and goal(7), would give us a
seven step plan for achieving the goal. Instantiating the axioms for all blocks is unproblematic,
since there are finitely many blocks. However, we cannot instantiate them for all times. So the
procedure is to first instantiate for some number, N of times. If we can solve the problem with the
constraint goal(m), for some m < N , then we have an m-step plan. If not we instantiate for more
times and try to find a longer plan.

5



School of Informatics, University of Edinburgh AI2

So for the blocks example, with three blocks, we have 16 fully parametrised fluents, as above.
We also have 24 fully parametrised actions (9 versions of each action with two parameters, 3 of
each with one parameter). to represent plans with 7 steps we need a logic with (7 × 24 + 8 × 16)
propositional letters3.

Appendix: Second Order Propositional Logic

In Propositional Logic statements are formed from propositional letters using boolean connectives;
a model is just a truth valuation on the propositional letters.
In Predicate Logic, we add predicates, – unary, binary, n-ary – first-order predicates are inter-

preted as relations on, or properties of, individuals4. A model is based on a set of individuals; an
n-ary predicate is interpreted as an n-ary relation on this set. Predicate Logic includes propositional
logic – propositional letters are just nullary predicates.
Quantification introduces another dimension. In First-order Predicate Logic we quantify over

individuals. In Second-order Predicate Logic we can quantify over predicates.
Second-order Propositional Logic, or Quantified Boolean Formulae (QBF), is what we get when

we add second-order quantifiers to propositional logic. Formally, we add universal and existential
quantifiers over propositions. Since, in the standard semantics, a proposition can only take two
values, >, or ⊥, we can express these using conjunction and disjunction.

∀A.ϕ(A) ≡ ϕ(>) ∧ ϕ(⊥)

∃A.ϕ(A) ≡ ϕ(>) ∨ ϕ(⊥)

For example, let ϕ(B) be the propositional formula A → (B ∧ C). Then ∃B.ϕ(B) is (A →
(> ∧ C)) ∨ (A → (⊥ ∧ C)), which is equivalent (A → C) ∨ ¬A, which, in turn, reduces to A → C.

3Note that these counts are for näıve representations where each fluent and each time step are represented without

further analysis. Practical planning systems may, and do, analyse the situation, for example by identifying invariants,

to produce more compact propositional representations.
4Second-order predicates would be interpreted as properties of first order properties. An example: the property

of being true of at least five individuals. We don’t consider these here.

6


