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course overview

Task 5: Learning from Data
Overview

1. Introduction

2. Learning with Decision Trees.

3. Learning as Search.

4. Neural Networks: the Perceptron, multi-layer networks,

back-propagation.

Text: Chapters 18-20 of Russell & Norvig
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Learning from Data

Two related tasks in applying AI techniques to any task:

1. Represent relevant knowledge in a computationally tractable form.

2. Design and implement algorithms which effectively employ that

knowledge so represented to achieve the desired processing.

Learning systems actually change and/or augment the represented

knowledge on the basis of experience.
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A Performance Element (PE)
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How happy I will be
   in such a state
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should do now
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How the world evolves

What my actions do
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What the world
is like now

• PE selects external

action

• New rules can be

installed to modify

PE

• What aspects of the

PE can be changed

by learning?
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What components of PE can change?

Examples are:

1. A direct mapping from conditions on the current state to actions.

2. A means to infer relevant properties of the world from the percept

sequence.

3. Information about the way the world evolves.

4. Information about the results of possible actions the agent can

take.

5. Utility information indicating the desirability of world states.
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6. Action-value information indicating the desirability of particular

actions in particular states.

7. Goals that describe classes of states whose achievement maximises

the agent’s utility.

Each of these components can be learned

• Have notion of performance standard

– can be hardwired: e.g. hunger, pain etc.

– provides feedback on quality of agent’s behaviour
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Learning from Data

We will consider a slightly constrained setup known as

Supervised Learning

• The learning agent sees a set of examples.

• Each example is labelled, i.e. associated with some relevant

information.

• The learning agent generalises by producing some representation

that can be used to predict the associated value on unseen

examples.

• The predictor is used either directly or in a larger system.
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A Range of Applications

Scientific research, control problems, engineering devices, game

playing, natural language applications, Internet tools, commerce.

• Diagnosing diseases in plants.

• Identifying useful drugs (pharmaceutical research).

• Predicting protein folds (Genome project).

• Cataloguing space images.

• Steering a car on highway (by mapping state to action).

• An automated pilot in a restricted environment (by mapping state

to action).
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• Playing Backgammon (by mapping state to its “value”).

• Performing symbolic integration (by mapping expressions to

integration operators).

• Controlling oil-gas separation.

• Generating the past tense of a verb.

• Context sensitive spelling correction (“I had a cake for desert”).

• Filtering interesting articles from newsgroups.

• Identifying interesting web-sites.

• Fraud detection (on credit card activities).

• Identifying market properties for commerce.

• Stock market prediction.
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Major issues for learning problems

• What components of the performance element are to be improved.

• What representation is used for the knowledge in those

components.

• What feedback is available.

• What representation is used for the examples.

• What prior knowledge is available.
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Sources and Types of Learning Systems

Is the system passive or active?

Is the system taught by someone else, or must it learn for itself?

Do we approach the system as a whole, or component by

component?

Our setup of Supervised Learning implies a passive system that is

taught through the selection of examples (though the “teacher”

may not be helpful).

AI2-LFD Introduction 1-11

Other Types of Learning Problems
unsupervised learning The system receives no external feedback,

but has some internal utility function to maximise.

For example, a robot exploring a distant planet might be set to

classify the forms of life it encounters there.

reinforcement learning The system is trained with post-hoc

evaluation of every output.

For example, a system to play backgammon might be trained by

letting it play some games, and at the end of each game telling

it whether it won or lost. (There is no direct feedback on every

action.)
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Supervised Learning

• Some part of the performance element is modelled as a function

f - a mapping from possible descriptions into possible values.

• A labelled example is a pair (x, v) where x is the description and

the intention is that the v = f(x).

• The learner is given some labelled examples.

• The learner is required to find a mapping h (for hypothesis) that

can be used to compute the value of f on unseen descriptions:

“h approximates f”
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Supervised Learning: Example

The first major practical application of machine learning techniques

was indicated by Michalski and Chilausky’s (1980) soybean

experiment. They were presented with information about sick

soya bean plants whose diseases had been diagnosed.

• Each plant was described by values of 35 attributes, such as

leafspots halos and leafspot size, as well as by its actual

disease.

• The plants had 1 of 4 types of diseases.
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• The learning system automatically inferred a set of rules which

would predict the disease of a plant on the basis of its attribute

values.

• When tested with new plants, the system predicted the correct

disease 100% of the time. Rules constructed by human experts

were only able to achieve 96.2%.

• However, the learned rules were much more complex than those

extracted from the human experts.
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Supervised Learning with Decision Trees
Overview

1. Attribute-Value representation of examples

2. Decision tree representation

3. Supervised learning methodology

4. Decision tree learning algorithm

5. Was learning successful ?

6. Some applications

Text: Sections 18.2-18.3 of Russell & Norvig
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Supervised Learning with Decision Trees

• Some part of the performance element is modelled as a function

f - a mapping from possible descriptions into possible values.

• A labelled example is a pair (x, v) where x is the description and

the intention is that v = f(x).

• The learner is given some labelled examples.

• The learner is required to find a mapping h (for hypothesis) that

can be used to compute the value of f on unseen descriptions.

• h is represented by a decision tree.
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Attribute-Value Representation for
Examples

The mapping f decides whether a credit card be granted to an

applicant. What are the important attributes or properties ?

Credit History What is the applicant’s credit history like?

(values: good, bad, unknown)

Debt How much debt does the applicant have?

(values: low, high)

Collateral Can the applicant put up any collateral?

(values: adequate, none)
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Income How much does the applicant earn?

(values: numerical)

Dependents Does the applicant have any Dependents ?

(values: numerical)

The last two attributes are numerical.

We may need to discretize them e.g. using

(values: > 10000, < 10000) for Income and

(values: yes, no) for Dependents.
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Example (cont.)
A set of examples (descriptions and labels) can be described as in
the following table.

Example Attributes Goal

Credit History Debt Collateral Income Dependents Yes/no

X1 Good Low Adequate 20K 3 yes
X2 Good High None 15K 2 yes

X3 Good High None 7K 0 no
X4 Bad Low Adequate 15K 0 yes

X5 Bad High None 10k 4 no
X6 Unknown High None 11K 1 no

X7 Unknown Low None 9k 2 no
X8 Unknown Low Adequate 9K 2 yes

X9 Unknown Low None 19k 0 yes

The learner is required to find a mapping h that can be used to

compute the value of f on unseen descriptions.
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Example (cont.)

Here the only possible values for h are {yes, no}.

Such mappings are called Boolean functions.

They can be used to model concepts, where yes means that the

description refers to an object that belongs to the concept.

In our example the concept is “person who should be given credit”.
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Supervised Learning: Terminology

• An example describes the value of each of the attributes and

the value of the goal predicate.

• The value of the goal predicate is called the classification or the

label.

• For boolean goal predicates we identify positive examples and

negative examples:

If the classification is “yes” (or TRUE) the example is positive.

If the classification is “no” (or FALSE), the example is negative.

• The complete set of examples is the training set.
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Decision Trees: Example

YES NO

INCOME

< 10,000>10,000

YES NO

INCOME

< 10,000>10,000

CREDIT
HISTORY

DEBT

NO COLLATERAL

UNKNOWN
BAD GOOD

YES

YES

COLLATERAL DEBT

YES

HIGH LOW

ADEQUATENONE

LOW

HIGH

NO
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Knowledge Representation

A Decision Tree takes as input an object or situation described by

a set of properties (attributes) and outputs a yes/no decision.

• Decision trees represent Boolean Functions.

• Each internal node in the tree corresponds to a test of a value of

one of the properties.

• Each branch of the tree is labelled with the possible value of the

test.

• Each leaf-node specifies the Boolean value to be returned if the

leaf is reached.
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Knowledge Representation (cont.)

• Any path through a decision tree can be represented by a

conjunction of logical tests.

• Can write an equivalent logical description of Yes leaves (or No

leaves).

• Logically, a decision tree is a collection of individual implications

corresponding to paths in tree ending in Yes nodes.

• Attributes correspond to propositions

E.g. ∀m. credit story(m, good)∧ debt(m, low)⇒ given credit(m)
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Expressive Power

Expressive Power of Decision Trees

• Despite the quantifier ∀, Decision Tree language is essentially

propositional, limited to defining a new property over a single

variable in terms of a logical combination of attributes of that

variable—hence a decision tree cannot represent a test such as

IF credit-history(man, bad)

AND income(man, < 10K)

AND married-to(man, wife)

AND income(wife, < 10K)

THEN no credit
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Expressive Power

• Any Boolean Function can be written as a tree but some such

functions would require a very large tree.

The obvious translation:

(1) at top level split on first attribute

(2) at 2nd level split on 2nd attribute

. . .

may produce large trees (due to exponential growth).

• NB The ideas here can be generalised for situations where there

are more than two outcomes.
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Supervised Learning: How?

• The learner is required to find a mapping h that can be used to

compute the value of f on unseen descriptions.

• In order to do that, machine learning programs normally try to

find a hypothesis h that gives correct classification to the training

set.

Is this reasonable?
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Decision Tree Induction: Quality
(How to induce decision trees from examples)

• A trivial solution has one path to a leaf for each example.

• However, this just memorises the examples, and does not extract

a pattern.

• A decision tree should be able to extrapolate from the given

examples to examples it has not seen.

• A good decision tree should not only agree with the examples. It

should also be concise.
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Supervised Learning: How? (cont.)

Principle of Ockham’s Razor The most likely hypothesis is the

simplest one consistent with all the observations.

This general argument has been given a rigorous quantitative

treatment in computational learning theory.

Can We Find the Smallest Decision Tree ? There is no known

efficient solution to this problem! What we can do is devise

heuristics that will often give us fairly small trees.
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Decision Tree Learning Algorithm

• Choose a “good attribute” to put at the top level.

• Take this attribute and split up the examples into subsets, one

for each value of the chosen attribute.

• For each subset that has only positive or only negative examples,

attach a leaf with the corresponding value.

• Each subset that has both positive and negative examples, needs

a new decision tree.

⇒ Apply the decision-tree-learning-algorithm recursively.

NB recursion has fewer examples and one fewer attribute
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Applying the Algorithm: Example

Choose Collateral:

Value Adequate induces subset: {X1,X4,X8}

Value None induces subset: {X2,X3,X5,X6,X7,X9}

{X1,X4,X8} all labelled yes - attach a leaf to this branch.

{X2,X3,X5,X6,X7,X9} has both positive and negative examples.

Choose Income:

Value < 10K induces subset: {X3,X7}

Value ≥ 10K induces subset: {X2,X5,X6,X9}

{X3,X7} all labelled no - attach a leaf to this branch.
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{X2,X5,X6,X9} has both positive and negative examples.

Choose Debt:

Value Low induces subset: {X9} - attach a leaf to it

Value High induces subset: {X2,X5,X6}

{X2,X5,X6} has both positive and negative examples.

Choose Credit History:

Value Good induces subset: {X2} - attach a leaf to it

Value Bad induces subset: {X5} - attach a leaf to it

Value Unknown induces subset: {X6} - attach a leaf to it
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A Better Decision Tree

NO

BAD

COLLATERAL

YES

GOOD

INCOME

LOW HIGH

DEBT

LOW HIGH

CREDIT HISTORY

UNKNOWNGOOD
BAD

NONOYES

YES

• This is a better tree than Slide 2-8, with fewer nodes including

leaf nodes

• Neither tree needs to use the Dependents property
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What if . . .

• If a value induces an empty subset {}, no such example has

been observed: ⇒ return a default value using the majority

classification of the parent set.

• If there are no attributes left, but still positive and negative

examples, then there is a problem! The algorithm returns the

majority classification of the remaining examples.
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Noisy Training Set

If there are no attributes left, but still positive and negative examples,

then there is no decision tree that gives a correct classification to

all the examples in the training set.

What can be the reason?

• Some of the data may be incorrect—the data is said to be noisy.

• The attributes may not give enough information to fully describe

the situation.

• The domain may be truly non-deterministic.

Algorithm returns the majority classification of remaining examples.

AI2-LFD Decision Trees: Learning Algorithm 2-21



function DECISION-TREE-LEARNING(examples, attributes, default) returns a decision tree
inputs: examples, set of examples

attributes, set of attributes
default, default value for the goal predicate

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY-VALUE(examples)
else

best � CHOOSE-ATTRIBUTE(attributes, examples)
tree � a new decision tree with root test best
for each value vi of best do

examplesi � � elements of examples with best = vi �

subtree � DECISION-TREE-LEARNING(examplesi, attributes � best,
MAJORITY-VALUE(examples))

add a branch to tree with label vi and subtree subtree
end
return tree
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T. Mitchell, Machine Learning, Sec. 3.7.1

Noise and Overfitting

Noisy examples can also lead to growing the tree too much (so as

to classify noisy examples correctly).

Often, using a smaller part of the tree is better.

How can we avoid overfitting ?

• Stop growing when data split not statistically significant

(small number of examples). or

• Grow full tree, then post-prune.
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Effect of Overfitting
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Choosing attributes

Imagine we have 100 positive and 100 negative examples.

Use notation [100P, 100N ] to describe this.

Imagine we have 3 attributes generating the following splits:

• A1 generates [100P, 0N ], [0P, 100N ].

• A2 generates [70P, 30N ], [30P, 70N ].

• A3 generates [50P, 50N ], [50P, 50N ].

Which attribute is the best one? and the worst?
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Choosing attributes

Credit History is NOT a good attribute to start with.

UNKNOWN  GOOD BAD

   +

-

X1 X2

X3

X4

X5

+

-

+

_

X8 X9

X6 X7

+ X1 X2 X4 X8 X9

-   X3 X5 X6 X7

CREDIT HISTORY

Has three possible outcomes, each of which has both +ve and -ve examples
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Choosing attributes

Collateral gives a definite response (Yes) for 3 cases.

ADEQUATENONE 

+ X1 X4 X8

- 

+ X2 X9

- X3 X5 X6 X7

+ X1 X2 X4 X8 X9

-   X3 X5 X6 X7

COLLATERAL
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Revision: Information Content

The information content (IC) of an event is the amount of new

information communicated when we learn about the event. The

information content of the event X = i, where X is a random

variable and i is the outcome, is defined as

IC(X = i) = log2

1

p(X = i)
.

The definition agrees with a number of common-sense ideas

regarding ‘information’:
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Revision: Information Content

1. More surprising events provide more information.

For example, if X is a random variable representing the current

weather in Edinburgh, the information content of the event

‘sunny’, p(sunny = 0.001), IC = 11 bits, is higher than that of

the event ‘cloudy’, p(cloudy = 0.8), IC = 0.322 bits.

2. Learning that an event that was bound to happen, did happen,

provides no information.

Such an event has a probability 1. Since log2 1 = 0, IC = 0 bits.
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Revision: Information Content

1. Learning the outcome of related random variables reduces the

information content.

For example, the information provided by learning that a randomly

selected English character is ‘u’ is lower when we already know

that the previous letter was‘q’.
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Revision: Entropy

The entropy of a random variable, I(X), is an average of the

information content over the outcomes of the random variable. If a

variable X has N possible outcomes,

I(X) =
N

∑

i=1

p(X = i) log2

1

p(X = i)
.

Entropy can be thought of as the average uncertainty of the random

variable. Prediction is easier when the entropy is lower since we are

less uncertain (on average).
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Revision: Entropy

For example, the entropy of a coin is maximized when it is

fair i.e. when p(heads = 0.5) and p(tail = 0.5), I(X) =

0.5 · log2
1

0.5 + 0.5 · log2
1

0.5 = log2 2 = 1 bit. A fair coin is also most

difficult to predict.

When the coin is biased, say, p(heads = 0.8) and p(tails = 0.2),

the entropy will be lower i.e. 0.8 · log2
1

0.8 + 0.2 · log2
1

0.2 = 0.722

bits, and we can win money if we predict heads...
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Revision: Entropy

Decision trees predict a class variable by asking questions about

(hopefully correlated) attributes of an input example. The answers

to these questions reduce the entropy (uncertainty) of the class

assignment making prediction gradually easier at each node in the

tree.
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Choosing attributes - the Details
The current example set has p positive and n negative examples.

A split on attribute A with v values generates v subsets with pi, ni

examples respectively (i = 1 . . . v).

I(p, n) =
p

p + n
log(

p + n

p
) +

n

p + n
log(

p + n

n
)

measures the entropy of the current set.

Trying to measure how far we are from having a single label.

I(X, X) = 1 and I(0, X) = I(X, 0) = 0

for any value of X
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Remainder(A) =
v

∑

i=1

pi + ni

p + n
I(pi, ni)

where A is an attribute, measures average entropy after split.

Again, trying to measure how far we are from having a single label.

Gain(A) = I(p, n)−Remainder(A)

tries to measure the improvement obtained by the split.

Gain(Collateral) = I(5, 4)− (6
9I(2, 4) + 3

9I(3, 0)) =
5
9 log 9

5 + 4
9 log 9

4−
6
9 ·

2
6 log 6

2−
6
9 ·

4
6 log 6

4−
3
9 ·

3
3 log 3

3−
3
9 ·

0
3 log 3

0 = 0.38
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Choosing attributes - the Details

1. For each attribute A compute Gain(A)

2. Choose the attribute that has the maximum Gain(A)

This is only a heuristic.

But it works well in practice.

Other criteria for choosing attributes were developed

(including dealing with numerical attributes directly).
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Decision Tree Quality

Having used a heuristic for finding a small decision tree, our hope

was that this tree can be used to (correctly) compute the value of

f on unseen instances.

• What if this tree is consistent with the training set but far from

correct otherwise?

• Can we assess the quality of the tree?

Some answers are provided by statistical analysis.

One approach, plotting learning curves, also gives some qualitative

impression.
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Assessing decision trees
1. Collect a large set of examples.

2. Divide into two disjoint sets: the training set and the test set.

3. Use the learning algorithm with the training set to generate a

hypothesis H.

4. Measure the percentage of examples in the test set, correctly

classified by H.

5. Repeat steps 1-4 with different sizes of training sets, and different

randomly selected training sets of each size.

6. Plot the training set size against the average % correct on test

sets —this is called the learning curve.
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Designing Oil Platform Equipment

• In 1986, BP used an expert system called GASOIL for designing

oil-gas separation systems for offshore platforms.

• Separations are done by a system whose design depends on a large

number of attributes—relative proportions of oil, gas, water, flow-

rate, pressure, density, viscosity, temperature....

• GASOIL system contained 2500 rules!

• Building such a system by hand would have taken 10 person-years.

• Using decision-tree learning methods, the system was developed

in 100 person days.
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Learning To Fly

• An automated controller can be constructed by learning the

correct mapping from a state of the system to the correct action.

• Sammut et al. 1992 used this method for learning to fly a Cessna

on a flight simulator, in a restricted environment.

• Data generated by watching human pilots perform a flight plan

30 times, each action taken resulted in a training examples being

created.
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• 90,000 examples were obtained, each described by 20 state values,

and a resulting action.

• Decision tree created and converted into C code for use by the

flight simulator (in a controlled manner).

• The program learns to fly, and at times flies better than its

teachers.
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Sky Image Cataloguing and Analysis
System called SkyCat by (Fayad, Djorgovski, Weir, 1996).

• Task: catalogue entries for objects in images.

• Large amounts of data collected by astronomers; objects too

“faint” need special methods.

• Images split to smaller parts; various features measured on each

to generate examples.

• Relatively small number of examples classified by astronomers.

• Decision Tree methods used to learn classifiers.

• Performance: 94.1% correct on test data; results used by

astronomers.
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Learning as Search
Overview

1. Learning can be done by searching for a good hypothesis

2. Learning Logical Descriptions

3. Current-Best-Search Learning

4. Version Space Learning

Text: Section 19.1 of Russell & Norvig
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Artificial Intelligence 2Bh

Supervised Learning

The Task: The learner is required to find a mapping h that can be

used to compute the value of f on unseen descriptions.

The Approach: By Ockham’s Razor, the learner tries to find

a concise representation for h that is consistent with all the

examples.

Hypothesis Space: A representation language for the possible

hypotheses must be fixed.

Bias: Criteria for choosing between different hypotheses (such as

conciseness) are employed; this shows an a-priori bias of the

learner to prefer some hypotheses to others.
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Learning as Search

Once the hypothesis space and preference criteria are fixed this

approach to learning can be viewed as a kind of search among a

set of candidate concepts, the hypothesis space.

This is useful since we can apply our general knowledge on search

strategies to learning problems!
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Learning Logical Descriptions: Example

Task: For instance, we could seek a definition of when it is worth

waiting at a restaurant.

Language: Logical expressions in the form of disjunctions of

conjunctions, with negation only applying to individual predicates

and with quantification only universal and over one variable.

Vocabulary: Unary predicates, corresponding to Boolean properties

of a situation, e.g. Hungry(r), Fri/Sat(r).

Binary predicates, corresponding to other attributes, e.g.

Patrons(r, Full), Type(r, French).

The goal predicate WillWait(r).
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Some possible hypotheses
h1 =

∀r.WillWait(r)⇔

Patrons(r, Some)

∨ Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, French)

∨ Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r,Burger)

h2 =

∀r.WillWait(r)⇔

Patrons(r, Some) ∧Hungry(r)

∨ Patrons(r, Full) ∧ ¬Hungry(r) ∧ Type(r, French)

Note that h2 is more restrictive than h1.
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Examples
• Examples are again descriptions of objects.

The label indicates whether the goal predicate holds for the object.

• An object is described using a logical expression that has one

“free” argument, referring to the object (like decision tree

examples).

• Normally, a subset of the language used for hypotheses is used

for examples. Here we do not allow disjunctions.

The example X1 may be described using:

Patrons(X1, Some) ∧Hungry(X1) ∧ Type(X1, Thai) ∧ . . .

and the classification WillWait(X1).
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Consistency

Consistency

When is an example consistent with a hypothesis?

Except in the two cases:

False positive: If WillWait(X1) follows from the hypothesis but

X1 in fact is a negative example. Eg:

Example: Patrons(X1, Some) ∧Hungry(X1) ∧ . . .

Classification: ¬WillWait(X1)

Hypothesis: ∀r.WillWait(r)⇔ Hungry(r)
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Consistency

False negative: If ¬WillWait(X2) follows from the hypothesis but

X2 in fact is a positive example. Eg:

Example: Patrons(X2, Full) ∧ ¬Hungry(X2) ∧ . . .

Classification: WillWait(X2)

Hypothesis: ∀r.WillWait(r)⇔ Hungry(r)
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Dealing with inconsistent examples

(a) (b) (c) (d) (e)
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+
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+
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−
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− −

−
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− −
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Coping with a false negative (b) requires generalisation (c).

Coping with a false positive (d) requires specialisation (e).

A learning algorithm results by performing a search over the

hypothesis space using generalisation and specialisation operators.
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Current Best Learning Algorithm

The algorithm needs to choose generalisations and specialisations

(there may be several). If it gets into trouble, it has to backtrack

to an earlier decision or otherwise it fails.
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Generalising a Description

• Remove a conjunct, e.g.

change [Hungry(r) ∧ Patrons(r, Full)] to [Hungry(r)]

• Add a disjunct, e.g.

change [Hungry(r)] to [Hungry(r) ∨ Patrons(r, Full)]

• Replace a predicate/value by a more general one, e.g.

change [Type(r, French)] to [Type(r, European)]

Here we assumed that the learner knows the semantics of French

and European.
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Specialising a Description

• Add a conjunct. e.g.

change [Hungry(r)] to [Hungry(r) ∧ Patrons(r, Full)]

• Remove a disjunct, e.g.

change [Hungry(r) ∨ Patrons(r, Full)] to [Hungry(r)]

• Replace a predicate/value by a more specific one, e.g. change

[Hungry(r)] to [V eryHungry(r)]

Here we assumed that the learner knows the semantics of

Hungry() and V eryHungry().
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CBL Example
Current Hypothesis Example Action

∀r.WillWait(r)⇔ false X1 false negative Add disjunct
∀r.WillWait(r)⇔ Alternate(r) X2 false positive Add conjunct
∀r.WillWait(r) ⇔
[Alternate(r)∧Patrons(r, Some)]

X3 false negative Remove conjunct

∀r.WillWait(r) ⇔
Patrons(r, Some)

X4 false negative Add disjunct

∀r.WillWait(r) ⇔
[Patrons(r, Some) ∨
(Patrons(r, Full) ∧ Fri/Sat(r))]

There were, of course, many other possibilities.
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Problems with CBL
Although CURRENT-BEST-LEARNING has been popular, it has a

number of problems:

• It needs to store all encountered examples (to check that changes

are consistent with all of them).

• Checking over all encountered examples when a change is made

is expensive.

• It is difficult to find good heuristics.

Real hypothesis spaces are large or infinite.

Backtracking may not quickly reconsider the right decision and

so may take a long time.
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Least Commitment Search

• LCS Avoids making arbitrary decisions that might end up wrong.

• The set of hypotheses consistent with the examples seen so far is

called the version space.

• The algorithm works by successively eliminating inconsistent

hypotheses from the version space. Hence called the candidate

elimination algorithm.
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Candidate Elimination Algorithm
(Version Space Learning)

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V, the version space: the set of all hypotheses

V � the set of all hypotheses
for each example e in examples do

if V is not empty then V � VERSION-SPACE-UPDATE(V, e)
end
return V

function VERSION-SPACE-UPDATE(V, e) returns an updated version space

V � � h � V : h is consistent with e �
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Compact Representation of Version
Spaces

Imagine you had to represent all the numbers between 1 and 2. You

could represent this set just by specifying the boundaries [1,2].

This works because numbers are ordered.

Hypotheses are also ordered, in terms of specificity.

For instance, for hypotheses given on Slide 3-5, h1 is more general

(less specific) than h2.

Representation of a version space in terms of its boundaries uses

two sets: S (most specific) and G (most general).
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Boundary Representation

this region all inconsistent

This region all inconsistent

More general

More specific

S 1

G1

S 2

G2 G3  . . .            G m

 . . .        S n
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Updating the Version Space

Given the current version space (constructed from examples seen so

far) and a new example, the sets S and G are updated to construct

the new version space. Four cases arise:

1. False negative for Si: ⇒ Further generalise Si.

2. False positive for Si: ⇒ Remove Si from the S set.

3. False positive for Gj: ⇒ Further specialise Gj.

4. False negative for Gj: ⇒ Remove Gj from the G set.

We initialize the version space as S0 = {false}, G0 = {true}
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VS Example
• Possible examples: a1, a2, a3, a4, a5.

NB in order to simplify the description

we are not giving the representation of

examples here but just their names.

• All “good” hypotheses are marked as

nodes on the graph.

• Each hypothesis description shows the

examples that are positive for it.

• Edges represent generalisations and

specialisations.

True

a2a3a4

False

a1a3                                a3a4                                a1a5

a1               a2                 a3                      a4                 a5
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VS Example

S G Example

false true a5 negative

false a1a3,a2a3a4 a1 negative

false a2a3a4 a4 positive

a4 a2a3a4 a2 negative

a4 a3a4 a3 positive

a3a4 a3a4 CONVERGENCE

True

a2a3a4

False

a1a3                                a3a4                                a1a5

a1               a2                 a3                      a4                 a5
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Version Space

Termination

Learning with version spaces can terminate in three ways:

1. We get to a single concept in the version space.

⇒ Return that as the answer.

2. The version space becomes empty, indicating that no hypotheses

(in the given space) are consistent with all the examples.

⇒ version space “collapses”
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Version Space

3. We run out of examples, still with multiple elements in the

version space. Not clear how to classify new examples. Several

possibilities:

(a) Select an element of the version space at random and use it.

(b) Take the majority vote of all elements in the version space.

(c) When classifying a new object, allow “maybe” as well as “yes”

or “no” (in case not all hypotheses agree).

We must be able to perform this efficiently.
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Version Space Learning

+ Is a complete search method (unlike heuristic methods for DTs).

+ Is an incremental method (no need to see all examples at once).

+ Has been shown by Gunter et al. (1997 AIJ) to be closely related

to Assumption-Based Truth Maintenance (ATM)

− Is not tolerant to noise (version space will collapse).

− Will not work if arbitrary disjunctions are allowed in the concept

language (generalisation then simply remembers the positive

examples by rote).

− May not be efficient if the sets S and G are large.
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Neural Networks — Overview

1. Overview, real neurons, basic neural computing units

2. Neural Networks as a Representation

3. Perceptrons and their learning algorithm

4. Useful mathematical concepts (gradient descent)

5. Multi-layer Perceptrons, back-propagation

6. Some Applications

Text: sections 20.5 of Russell & Norvig
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Real neurons

The fundamental unit of all nervous system tissue is the neuron

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse
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A neuron consists of

• a soma, the cell body, which contains the cell nucleus

• dendrites: input fibres which branch out from the cell body

• an axon: a single long (output) fibre which branches out over a

distance that can vary between 1cm and 1m

• synapse: a connecting junction between the axon and other cells
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Real Neurons - Properties

• Each neuron can form synapses with anywhere between 10 and

105 other neurons

• Signals are propagated at the synapse through the release of

chemical transmitters which raise or lower the electrical potential

of the cell

• When the potential reaches a threshold value, an action

potential is sent down the axon

• This eventually reaches the synapses and causes potentiation of

the subsequent neurons
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• Synapses can be inhibitory (lower the post-synaptic potential) or

excitatory (raise the post-synaptic potential)

• Synapses can also exhibit long term changes of strength in

response to the pattern of stimulation
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Artificial Neural Networks

• A neural network is composed of a number of units connected

together by links. Each link has an associated numeric weight

• Input and output units are connected to the environment

• Weights are the long term storage, learning involves changing the

weights

• Learning modifies the weights so as to try to make the output

value(s) correct given the input values.
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Recurrent networks allow

cycles on directed graph

i.e. links can form arbitrary

topologies.

We will concentrate on
acyclic networks, known as
feed-forward networks.

• links are unidirectional
• network computes a function

of the input values that
depends on the weight settings
• no internal state other than

weights themselves

hidden
units

input
units

output
unit
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The formal neuron

• Each unit has input links from other neurons, and a current

activation level.

• Each unit updates its activation (output) using a local

computation based on its inputs without any need for global

control over the set of units as a whole.

• This formal model is a gross simplification of the detailed function

of a neuron.
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The formal neuron

Output

g
Input

Links

Output

Links

ini

Σ

a   =  g(in ) iia j Wj,i

Activation
  Function

     Input
  Function

ia

• The neuron computes the total weighted input to the neuron

ini =
∑

j

Wj,iaj = Wi · a
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• Wj,i is weight on link from neuron j to neuron i, Wi is the vector

of weights leading into unit i, and a is the vector of input values.

• computing ini is a linear operation

• A non-linear component called the activation function g

transforms the sum of weighted inputs into the final output

value ai

ai← g(ini) = g(Wi · a)

Note: operation in Wi · a is vector dot product

• We can use different mathematical functions for g

• Usually, all units (neurons) in network have the same activation

function
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Activation Functions

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini

stept(z) =

{

0 if z < t

1 if z ≥ t

The step and sign functions are examples of the threshold activation function.
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Thresholds

• For a step or sign function, with threshold value t: if ini ≥ t the

unit fires. The threshold thus corresponds to the minimum total

weighted input necessary to cause the neuron to fire.

• Convenient to replace the threshold with an extra weight W0, the

bias weight, from unit 0 which always has activation a0 = −1.

Since ini ≥ t⇔ ini − t ≥ 0

ai = stept





n
∑

j=1

Wj,iaj



 = step0





n
∑

j=0

Wj,iaj
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a

a

a

1

2

3

w

w

w

1

2

3

a

a

a

1

2

3

w

w

w

1

2

3

w0

-1

threshold = w threshold = 00

4 4a a

• Trick also useful for other activation functions, e.g. the sigmoid

• This makes the learning algorithm simpler as only weights need

to be adjusted rather than weights and threshold
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Alternative Representation of Formal
Neuron

This leads to a modified mathematical model of the formal neuron

where the bias weight W0,i is connected to a fixed input a0 = −1:

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj
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The Perceptron

A perceptron is a single-layer feed-forward neural network. Consider an

example in which the activation function is a step function:

• Set I0 = −1

• Unit fires when
∑n

j=0 WjIj =
∑n

j=1 WjIj −W0 ≥ 0

• W0 is the threshold :

the unit fires when
∑n

j=1 WjIj ≥W0

.

.

I

I

I

-1

1

2

n

Σ

W

W

W

Wn

0

1

2

thresholdin = Σ W I j j
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Computing Boolean Functions with
Perceptrons

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

Units with a (step) threshold activation function can act as logic

gates, given appropriate input and bias weights.
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AND-gate truth table

Bias input output

a0 a1 a2

-1 0 0 0

-1 0 1 0

-1 1 0 0

-1 1 1 1

AND = step1.5(1 · a1 + 1 · a2) = step0(1.5 · −1 + 1 · a1 + 1 · a2)

However, single-layer feed-forward nets (i.e. perceptrons) cannot

represent all Boolean functions
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Some Geometry

• In 2 dimensions w1x1 +w2x2−w0 = 0 defines a line in the plane.

• In higher dimensions
∑n

i=1 wixi − w0 = 0 defines a hyperplane.

• The decision boundary of a perceptron is a hyperplane.

• If a hyperplane can separate all outputs of one type from outputs

of the other type, the problem is said to be linearly separable.
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XOR is not linearly separable

I1 I2 XOR(I1, I2)

(a) 0 0 0

(b) 0 1 1

(c) 1 0 1

(d) 1 1 0

• Function as 2-dimensional plot based on values of 2 inputs

• black dot: XOR(I1, I2) = 1 and white dot: XOR(I1, I2) = 0

• Cannot draw a line that separates black dots from white ones
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Multilayer Neural Network
Can represent XOR using a network

with two inputs, a hidden layer of

two units, and one output. A

step (threshold) activation function is

used at each unit (threshold weights

(not shown) are all zero). Many

architectures possible, this is an AND-

NOT OR AND-NOT network.

1

1

−1
−1

1
1

In fact, any Boolean function can be represented, and any bounded continuous

function can be approximated.
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Single Layer — Multiple Outputs

• Each output unit is independent

of the others; each weight only

affects one output unit.

• We can limit our study to single-

output Perceptrons.

• Use several of them to make a

multi-output perceptron. Perceptron Network Single Perceptron

Input
Units Units

Output Input
Units Unit

Output

OIj Wj,i Oi Ij Wj
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Supervised Learning: How?

• The learner sees labelled examples e = (Ie, Te)

such that f(Ie) = Te.

• The learner is required to find a mapping h that can be used to

compute the value of f on unseen descriptions.

• In order to do that, machine learning programs normally try to

find a hypothesis h that gives correct classification to the training

set (or otherwise minimises the number of errors).
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Learning Perceptrons — Basic Idea

• Important Note: We assume a threshold activation function,

namely a step function, in the next few slides.

• Start by assigning arbitrary weights to W.

• On each example e = (I, T ):

classify e with current network:

O ← step0(W · I) = step0(
∑

WiIi)

if O = T (correct prediction) do nothing.

if O 6= T change W “in the right direction”.

But what is “the right direction” ?
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The Right Direction

• if T = 1 and O = 0 we want to increase W · I =
∑

WiIi

Can do this by assigning Wnew = W + ηI

since Wnew · I =
∑

Wnew
i Ii =

∑

WiIi + η
∑

IiIi >
∑

WiIi

• Amount of increase controlled by parameter 0 < η < 1

• if T = 0 and O = 1 we want to decrease W · I =
∑

WiIi

Can do this by assigning Wnew = W − ηI

since Wnew · I =
∑

Wnew
i Ii =

∑

WiIi − η
∑

IiIi <
∑

WiIi

• In both cases we can assign Wnew = W + ηI(T −O)
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Perceptron Learning Algorithm (Version 1)

function perceptron-learning(examples) returns a perceptron hyp.

network ← a network with randomly assigned weights

repeat

for each e in examples do

O ← perceptron-output(network,Ie)

T ← required output for Ie

update weights in network based on Ie, O and T

W←W + η Ie (T −O)

end

until all examples correctly predicted or other stopping criterion

return NEURAL-NET-HYPOTHESIS(network)

Perceptron algorithm with step (threshold) activation function.
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Perceptron Learning Algorithm

• 0 < η < 1 is known as the learning rate, other symbols e.g. α, ε

used by different authors

• Rosenblatt (1960) showed that the PLA converges to W that

classifies the examples correctly (if this is possible).

• PLA behaves well with noisy examples.

• Note that PLA given above is an incremental algorithm; batch

version also possible.
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PLA:Example
• Assume that output O=1, and

target is T=0, ⇒ T -O=-1

• W0←W0 + η ∗ (−1) ∗ (−1)

• W1←W1 + η ∗ I1 ∗ (−1)

• W2←W2 + η ∗ I2 ∗ (−1)

-1

I

I

O

2

1
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Understanding the PLA

• Will look at a simpler problem: learning a linear model

y = W · I =
∑

WiIi.

• For example: y = w0 + w1x

the model has unknown parameters w0, w1.

• We want to determine these on the basis of some training data.

• We can then use the model to generalize, i.e. to predict outputs

for new inputs.

• Trivial without noise but not so with noise.
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Weight space

• Any linear model has a particular

number of weights (parameters).

• Particular values for these

parameters can be thought of as

a point in weight space.

• Can measure the cumulative

error as function of parameters.

0 1 2-1-2

-1

-2

2

1

w

w
1

0
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Error Function

• Use an error function, E = 1
2

∑

e(Te −Oe)
2

• Has desirable property that E = 0 if Te = Oe for all e.

• So, E = 0 can be obtained if there is no noise.

• Otherwise E > 0 but we can try to minimise it.

• Each value of W generates a value of E, call it E(W).

We are looking for W that minimises E(W).

AI2-LFD Neural Networks: gradient descent 4-30



Error Function — Example

• Fit y = w0 + w1x with 3 examples (the form is (x, y)):

(1, 9), (2, 7), (3, 4).

• Error is

E(W) =
1

2

{

(9− w1 − w0)
2 + (7− 2w1 − w0)

2 + (4− 3w1 − w0)
2
}

=1.5w2
0 + 7w2

1 − 20w0 − 35w1 + 6w0w1 + 73
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Error Surface

• “Best” model corresponds to the the

lowest point on the error surface.

• Our problem has a single minimum

(can be obtained analytically).

• General, non-linear problems, have

a difficulty with local minima.

• ⇒ Search using methods that “go

downhill” on the error surface.

E

w

w

B C.A.

2

1

grad(E)
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Gradient descent

• If E(W) is the error function, then the derivative ∂E
∂Wi

measures

the slope of the error surface in the Wi direction.

• This is summarised in vector notation as: g = ∂E
∂W

=







∂E
∂W0
...

∂E
∂Wn







• Locally, if we are at point W, the quickest way to decrease E is

to take a step in the direction −g.

• Given a formula for E, ∂E
∂Wi

can often be derived with

straightforward algebra.
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Gradient Descent Algorithm

Initialize W

while E(W) is unacceptably high

calculate g = ∂E
∂W

W←W − ηg

end while

return W

As in the PLA η is the learning rate.

Here updates are in batch (error computed on all examples);

incremental version as in PLA also possible.
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Example (continued)

• Fit y = w0 + w1x with 3 examples (the form is (x, y)):

(1, 9), (2, 7), (3, 4).

• Error is E(W) = 1.5w2
0 + 7w2

1 − 20w0 − 35w1 + 6w0w1 + 73

• Partial derivatives:
∂E
∂w0

= 3w0 − 20 + 6w1
∂E
∂w1

= 14w1 − 35 + 6w0

• Initial guess: w0 = 0, w1 = 0; η = 0.1
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• Iteration:

w0← w0 − 0.1(3w0 − 20 + 6w1)

w1← w1 − 0.1(14w1 − 35 + 6w0)

• w0← −0.1 · −20 = 2; w1← −0.1 · −35 = 3.5

• w0← 2− 0.1(6− 20 + 21) = 1.3

w1← 3.5− 0.1(49− 35 + 12) = 0.9

• . . .

• Convergence w0 = 11.66; w1 = −2.50

changes to weights < 10−4 after 226 iterations
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Linear Models Again

• O = W · I =
∑

WiIi

• Use an error function, E = 1
2

∑

e(Te −Oe)
2

• ∂E
∂Wi

= −(Te −Oe)
∂Oe
∂Wi

= −(Te −Oe)Ii

• So the update is: Wi←Wi + η(Te −Oe)Ii.

• PLA uses the same update!

The formula however does not correspond to its O function

(the derivative of step is not very useful).

NB This just says that it does not correspond to our analysis not

that it is a bad algorithm.
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Problems with Gradient Descent

• Need to choose η (Too small ⇒ too slow; Too big, unstable).

• Local minima.

• Plateaux.

• Gradient descent is a “hill-climbing” (actually “hill-descending”)

search: An iterative improvement approach that always moves in

the direction that is most promising locally.

No memory, no global perspective, no ability to backtrack.

• But it works well in many cases.
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Perceptron Learning Algorithm (Version 2)

function perceptron-learning(examples) returns a perceptron hypothesis
inputs: examples, a set of examples, each with input x = x1, ..., xn and output y.

network, a perceptron with weights Wj, j = 0...n, and activation func. g
repeat

for each e in examples do
in←

∑n

j=0 Wjxj[e]

Err ← y[e]− g(in)
Wj ←Wj + η × Err × g′(in)× xj[e]

end
until all examples correctly predicted or other stopping criterion

return NEURAL-NET-HYPOTHESIS(network)

Gradient descent learning algorithm for perceptrons, with differentiable

activation function g. For threshold perceptrons, g′(in) is omitted from the

weight update leading to previously seen algorithm (version 1).
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Multi-Layer Neural Networks
• More expressive than Perceptrons.

• Two issues for learning:

(1) what size and structure to use

(2) how to update the weights

• For (2) we can use the same scheme

as before.

• But we need a differentiable

activation function, in order to use

the mathematical tools.

hidden
units

input
units

output
unit
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Training a MLP using Gradient Descent

• Assume network structure chosen.

• Weights are adjusted to reduce the error W←W − η ∂E
∂W

or for individual weights Wji←Wji − η ∂E
∂Wji

NB change in notation: Wji connects unit j to unit i

• Need differentiable activation function (so step will not do).

• Calculation like before for the output layer

but we do not have the output value for hidden layers.
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Backpropagation - Basic Idea

Output

g
Input

Links

Output

Links

ini

Σ

a   =  g(in ) iia j Wj,i

Activation
  Function

     Input
  Function

ia

• Calculate ∆i = − ∂E
∂ini

for each unit in the network

• Then ∂E
∂Wji

= ∂E
∂ini

∂ini
∂Wji

= −∆iaj

because ∂ini
∂Wji

=
∂[

∑

k Wkiak]
∂Wji

= aj
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The Update Rule

• Threshold Perceptron Wji←Wji + ηIj(Ti −Oi)

• Backpropagation Wji←Wji + ηaj∆i

• Q: How do we compute the ∆s ?

• A: Compute them first for the output units, and then propagate

them backwards through the net, from outputs to inputs

• Hence the name backpropagation
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Computing ∆i for Output Unit

• Here error refers to a single example.

• For an output unit indexed by i

∆i = −
∂E

∂ini

= −
∂[12(Te −Oe)

2]

∂ini

= g′(ini)(Ti −Oi)

where g′ is the derivative of g and Oi = g(ini)
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Computing ∆i for Hidden Unit

• ini contributes to E only through the outputs

⇒ only through nodes connected to the output of node i.

Let k range over these nodes.

∆i = −
∂E

∂ini

= −
∑

k

∂E

∂ink

∂ink

∂ai

∂ai

∂ini

=
∑

k

∆kWik g′(ini)

• Reorganising: ∆i = g′(ini)
∑

k Wik∆k

• Calculating a ∆ value only requires ∆s from further forward in

the network.
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Backpropagation: summary

• Compute ∆ values for the output units: ∆i = g′(ini)(Ti −Oi)

• Starting with the output layer, keep propagating the ∆ values

back to the previous layer, until the input layer is reached.

• This is computed by ∆i = g′(ini)
∑

k Wik∆k

• Update each weight using gradient descent Wji←Wji + ηaj∆i
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Backpropagation: pseudocode

function backpropagation-learning(examples) returns network
network ← a network with randomly assigned weights
repeat

for each e in examples do
O← neural-network-output(network,e)
T← required output for e
compute error and ∆s for unit in output layer
for each subsequent layer in the network

compute the ∆s for units in the layer
end
update all weights

end
until network has converged

return network
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Activation functions

• The activation function should be differentiable everywhere.

• This rules out the sign or step functions.

• The sigmoid function g(z) = 1
1+e−z is a common choice for

multilayer networks

• It “approximates” a step function.

• Also has nice property that g′(z) = g(z)(1− g(z))

so the computations are simple.
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Back Propagation - Example

output
unit

2I

1I

a7

a6

a5

a4

a3

a2

a1

input
units

unitshidden

• Assume

η = 0.1

w21 = w31 = 1, w42 = w43 = w52 = w53 = 0.6

w64 = w65 = w74 = w75 = 1
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• Example (I1,I2) = (2,3) and T = 0

• First Step: compute ini, ai, g′(ini)

– in4 = 1 · 2 + 1 · 3 = 5; a4 = 1
1+e−5 = 0.993; g′(in4) =

0.993 · 0.007 = 0.007

– in5 = 5; a5 = 0.993; g′(in5) = 0.007

– in2 = 0.6 · 0.993+0.6 · 0.993 = 1.192; a2 = 0.767; g′(in2) =

0.179

– in3 = in2 = 1.192; a3 = a2 = 0.767; g′(in3) = 0.179

– in1 = 1 · 0.767 + 1 · 0.767 = 1.534; a1 = 1
1+e−1.534 =

0.823; g′(in1) = 0.823 · 0.177 = 0.146

The output of the network, a1 = 0.823, is far from the true
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output T = 0.

• Second step: compute ∆

– ∆1 = g′(in1)(T − a1) = 0.146(0− 0.823) = −0.120

– ∆2 = g′(in2)w21∆1 = 0.179 · 1 · −0.120 = −0.021

– ∆3 = ∆2

– ∆4 = g′(in4) · [w42∆2 + w43∆3] = −0.000176

– ∆5 = ∆4

• Third Step: update weights

– w64← w64 + ηa6∆4 = 1 + 0.1 · 2 · (−.000176) = 0.9999648

– . . .

– w42← w42 + ηa4∆2 = 0.6 + 0.1 · 0.993 · (−0.021) = 0.5579

– . . .
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– w21← w21 + ηa2∆1 = 1 + 0.1 · 0.767 · (−0.120) = 0.9908

– . . .

• We are now ready to handle the next example
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Using backprop to train a MLP

• Each pass over all examples is called an epoch.

• With m examples and |W| weights,

each epoch takes O(m|W|) time.

• How many epochs are needed? Perhaps lots!

Have to choose a good η

• Local optima can be a problem; use different starting points in

weight space and (?) find the best performance

• How do you choose a network architecture (i.e. number of layers,

number of units in each layer)?
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Generalization

• We care about the generalization performance of a network, i.e.

its predictions on new inputs.

• Use strategy similar to decision trees.

• Divide into two disjoint sets: the training set and the test set.

• Use the learning algorithm with the training set.

• Estimate generalization error using the test set.
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Choosing the Right Model
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Choice is crucial for getting good generalisation.

Model too complex: “overfitting”

Model too simple: “underfitting”
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Choosing a model

• Pick a number of different models and find out which one has the

best test error.

• Different models may include:

(1) different architectures,

(2) networks with the same architecture but different starting

weight vectors.

• The above method is the standard one, but this is an active

research area ...
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ALVINN

Autonomous Land Vehicle in a Neural Network (Pomerleau, 1993)

• Task: steer a vehicle along a single lane on a highway by observing

the performance of a human driver

• The vehicle (Chevy van) is fitted with computer controlled

steering, acceleration and braking

• On-board sensors include colour stereo video, laser rangefinder,

radar, inertial navigation system

• Researchers ride along inside the vehicle to monitor the progress

of the vehicle and network.
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The ALVINN Architecture

• Input: 30× 32 pixel array

• Output: 30 units, each corresponding to a steering direction.

• 5 hidden units, fully connected to inputs and outputs

• Method: Map single video frames to steering direction (pure

reactive agent)

– collect data from human drivers (5 minutes)

– Train network, then ready to drive

– problem: human drivers are too good!

– solution: synthesize data from slightly off course
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ALVINN: Results

+ Has driven at up to 70 mph for 90 miles on public highways near

Pittsburgh

+ Has driven at normal speeds on single lane dirt roads, paved bike

paths and two lane suburban streets

- Not able to drive on a road type for which it has not been trained

- Not very robust with respect to changes in lighting conditions.
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Playing Backgammon
Tesauro (1990, 1995)

• A conventional program generates possible moves and presents

them to the network for assessment

• Network evaluates moves by outputting a score for any (board

position, dice values, possible move) combination

• Training set of 3000 instances; there are ∼ 1020 legal board

positions in backgammon

• Each possible move is rate on a scale of -100 to 100

• “higher level” features such as “degree of trapping” turned out

to be a necessary part of the input.
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Playing Backgammon: Results

• Neurogammon convincingly won the computer backgammon

championship at the 1989 International Computer Olympiad

• Can train with supervised learning, but better with reinforcement

learning

• RL trained program is at, or near to, playing strength of best

humans
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Optical Character Recognition

(LeCun et al, 1989)

• Task: read ZIP codes

• Input: segmented, normalized, 16× 16 images

• Output: Decision 0, 1, 2, . . . , 9

• Architecture: complex, layers of trainable feature detectors

(weight sharing)

• Performance: very good.

AI2-LFD Neural Networks: applications 4-62



Context Sensitive Spelling

System called WinSpell, by Golding and Roth (1995).

• Mistakes like “I had a cake for desert” cannot be corrected by

conventional spell checkers.

• Learn a classifier that for each occurrence decides which word of

a “confusion set” it should be.

• Extract Boolean features from a sentence using given patterns.

E.g. “in the *”, “arid within ±10 words”.

• Features extracted automatically from patterns.
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WinSpell Architecture and Performance

• Several layers, but each layer is trained directly and separately.

• Use one layer of Perceptrons to learn many predictors for each

word (vary parameters).

Learning algorithm is Winnow (Littlestone 1989), a variant of the

PLA which is suitable for handling many irrelevant features (as is

the case here).
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• Use one layer of “selection nodes” to combine output of predictors

for each word.

Use algorithm Weighted Majority (Littlestone and Warmuth,

1994) suitable for combining predictions.

• Use one node to make final decision.

• Performance: gets 96.4% correct on test set (currently best).
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Learning from Data

• We have looked at techniques for supervised learning:

given a set of examples with associated labels

find a function h that can be used to predict label values for

unseen examples.

• Decision Trees, Logical Descriptions, Neural Networks.

• Representation matters.

• Large number and various kinds of applications.

• Much more exists: both theory and practical aspects.

See modules LFD1, LFD2, CLT, GA, PMR
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