AGTA Tutorial Sheet 1 (Week 3)

Please attempt these questions before coming to the tutorial on Tuesday.

1. Consider the following 2-player finite strategic form game, G:

[(7,3)]	(6,3)	(5, 5)	(4,7)
(4,2)	(5, 8)	(8, 6)	(5, 8)
(6,1)	(3,8)	(2, 4)	(6,9)

This is a "bimatrix", to be read as follows: Player 1 is the row player, and Player 2 is the column player. If the content of the bimatrix at row *i* and column *j* is the pair (a, b), then $u_1(i, j) = a$ and $u_2(i, j) = b$.

- (a) Consider the mixed strategies $x_1 = (1/4, 1/2, 1/4)$ and $x_2 = (2/3, 1/3, 0, 0)$, for player 1 and 2, respectively. Here, e.g., player 1 is playing row 2 with probability 1/2, etc. What is the *expected payoff* to Player 1 under profile $x = (x_1, x_2)$?
- (b) Using what you have learned in lectures, see if you can compute all the Nash Equilbria (pure or mixed) of game G.
- 2. Consider the 2-player zero-sum game given by the following payoff matrix, A, for Player 1:

$$A = \begin{bmatrix} 4 & 2 & 9 & 2 & 5 \\ 6 & 3 & 5 & 9 & 7 \\ 1 & 4 & 8 & 5 & 7 \\ 5 & 1 & 3 & 5 & 6 \end{bmatrix}$$

Specify the linear programming problem you could use to "solve" this game, meaning to compute the minimax value of this game, and to compute a minmaximizer strategy for Player 1. What if you wanted to compute also a maximizer strategy for Player 2?

Next, try to actually compute the minimax value of this game (hint: first simplify the game to the extent possible).