1 Question 1

Consider a game graph $G = (V, E, v_0, F)$, where the (finite) set of vertices $V = V_1 \cup V_2$ is partitioned into set of vertices V_1 (belonging to player 1) and set of vertices V_2 (belonging to player 2), E being the set of edges of G. We are also given a start vertex $v_0 \in V$, and a set $F \subset V$ of good (target) states. Denote $E(v)$ the set of all successor vertices for v, i.e $E(v) = \{v' \in V | (v, v') \in E\}$. We assume that $\forall v, E(v) \neq \emptyset$, i.e every state has a successor state (no deadlocks).

Let Π denote the set of infinite paths in G. For $\pi \in \Pi$, $\pi = v_0 v_1 ...$, let us denote the set of states that appear infinitely often in π as $inf(\pi) = \{v \in V | \forall i \geq 0, \exists j \geq i, v_i = v\}$

The play π is a win for player 1 if $inf(\pi) \cap F \neq \emptyset$, and otherwise it is a win for player 2 (i.e a loss for player 1). Describe an efficient algorithm to find which player wins, and to extract a memoryless winning strategy, given such a game.

1.1 Algorithm 1

First, at iteration 1, we calculate the set of states F'_1 where player 1 can force to reach a state in F at least once. In other words, find the states from which player 1 has a strategy to reach a state in F at least once against all strategies of player 2.

Then, we calculate the set of all vertices T_1 from which player 2 has a strategy to reach $V \setminus F'_1$ (regardless of what player 1 does). It is easy to see that $V \setminus F'_1$ is winning for player 2. Also, T_1 is winning for player 2 as well. Observe that the winning set of nodes for player 1 have to be contained in $V \setminus T_1$ and hence we only need to consider the game on the reduced graph $G' = (V', E') := G \setminus T_1$.

We continue repeating this procedure for the reduced game graph G', at iteration 2, where we calculate the set of states F'_2 where player 1 can force to reach a state in $F' \cap V'$ on the reduced graph G'. We calculate the set of all vertices T_2 from which player 2 has a strategy to reach $V \setminus F'_2$ on the subgraph G' and then we reduce the game graph to $G'' := G' \setminus T_2$.

We repeat this process until we cannot remove any more vertices (reach a fixed point), in which case the set of remaining nodes is the set of winning vertices for player 1. Note that since F is finite, there must always be the case that the algorithm terminates. Observe that at each iteration i, by construction, F'_i and T_i partition the game graph.

We claim that after the final iteration k (considering that after k iterations the algorithm terminates), the set F'_k consists only of winning states for player 1. Suppose that there is a state $v_i \in F'_k$ such that $v_i \in V_2$ and has an outgoing edge towards T_k (it is a player 2’s state in F'_k that has an outgoing edge in T_k). But by construction of T_k, it must be the case that v_i would have been removed.
from the game graph in a previous iteration. Contradiction. Therefore, the set F'_k must only contain winning states for player 1. If $v_0 \in F'_k$, then player 1 wins, otherwise, player 2 wins.

Now we show that player 1 has a memoryless winning strategy for all states in F'_k.

- for any state $v_i \in F'_k \cap F$, player 1 is guaranteed to stay in F'_k
- for any state $v_i \in F'_k \setminus F$, use a memoryless deterministic strategy to reach F

By construction of T_k, player 2 also has a memoryless winning strategy.

Since at each iteration i, computing the set F'_i requires $O(|E|)$ time (by use of algorithm described in class), and because the algorithm runs $O(|V|)$ iterations (since the set F is finite), the worst case running time is $O(|E||V|)$.

![Game Graph](image)

$G = (V, E)$, where $V = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. The red nodes belong to player 1, whereas the blue nodes belong to player 2. $F = \{v_1, v_2, v_3\}$.

Iteration 1.

- $F'_1 = F \cup \{v_0, v_3, v_4\}$.
- $V \setminus F'_1 = \{v_6, v_7\} \neq \emptyset$ (we still can remove vertices)
- $T_1 = (V \setminus F'_1) \cup \{v_5\}$
- $G' = (V', E') := G \setminus T_1$, $F \cap V' = \{v_1, v_2\}$

Then, G' becomes:
Iteration 2:
\(F'_2 = (F \cap V') \cup \{v_0\} = \{v_0, v_1, v_2\} \)
\(V' \setminus F'_2 = \{v_3, v_4\} \neq \emptyset \) (we still can remove vertices)
\(T_2 := (V' \setminus F'_2) \cup \{v_2\} \)

Iteration 3:
\(G'' = (V'', E'') := V' \setminus T_2. \) \(F \cap V'' = \{v_1\} \) Then, \(G'' \) becomes:

\(F'_3 = (F \cap V'') \cup \{v_0\} = \{v_0, v_1\} \)
\(V'' \setminus F'_3 = \emptyset \) (we cannot remove any more vertices!)

Return the winning set for player 1, i.e \(\{v_0, v_1\} \).

1.2 Algorithm 2

Let us compute \(F_i \), for \(i \geq 1 \), to be the set of good (target) states \(f \in F \) from which player 1 can force to visit \(F \) at least \(i \) times, i.e the set of final states such that player 1 has a strategy to visit \(F \) at least \(i \) times, regardless of what player 2 does. Then, we show that (in lemma 1.1):

\[... \subseteq F_3 \subseteq F_2 \subseteq F_1 \subseteq F_0 = F \]

We define:

\[F_0 = F \]
\[F_{i+1} = F \cap Win'_1(F_i) \]

where for any set of nodes \(S \subseteq V \),
\(Win'_1(S) = \{v \in V \mid \text{pl.1 can force reaching } S \text{ starting from } v \text{ in one or more moves} \} \)

3
Note that computing Win'_1 boils down to applying the easy bottom up algorithm found in class.

Denote $F = \bigcap_i F_i$

Lemma 1.1. $F_{k+1} \subseteq F_k, \forall k \geq 0$

Proof. Induction on k.

Base case: $k = 0$. $F_1 = F \cap Win'_1(F) \subseteq F$

Induction step:

By induction hypothesis (I.H), $F_k \subseteq F_{k-1}$. Observe that Win'_1 is monotonically decreasing.

From the definition, we have that $F_{k+1} = F \cap Win'_1(F_k)$ and using I.H and the fact that Win'_1 is monotone, $F_{k+1} = F \cap Win'_1(F_k) \subseteq F \cap Win'_1(F_{k-1}) = F_k$

Since F is finite, it must be the case that there exists a k, such that $F = \bigcap_i F_i = \bigcap_{i=k} F_i = F_k$. In other words, $F = F \cap F_1 \cap F_2 \cap ... \cap F_k$, where for every $j > k$, $F_j = F_k$, i.e all terms F_j after F_k will be in fact equal to F_k.

We show that the states in $Win'_1(F)$ are winning for player 1, by showing how to construct a memoryless strategy. We know that $\exists k$ s.t $F_{k+1} = F_k = F \cap Win'_1(F_k)$. Therefore, using this fact and the way F_k is constructed, we have that for a node v_i belonging to player 1 and $v_i \in F_k$, player 1 will choose an edge that will lead to $Win'_1(F_k)$. If a node v_i belongs to player 2 and $v_i \in F_k$, all edges will go back to $Win'_1(F_k)$.

If $v_i \in Win'_1(F) \setminus F$, player 1 uses a memoryless strategy (by algorithm in class) to reach F.

Now we need to compute a memoryless winning strategy of player 2 for all states in $V \setminus Win'_1(F)$. The argument is similar to the one developed for player 1 winning strategy, needing to prove that from $V \setminus Win'_1(F)$, player 1 can force at most only a finite number of visits to F.

Remark. Algorithm 1 and Algorithm 2 do the same thing, by computing the winning set for the corresponding player. The only difference is the fact that the algorithm 1 computes ad-hoc at each iteration i the states from which player 1 can force to reach F at least i times (on game graph G), whereas algorithm 2 prepares at each iteration i the set of final nodes from which player 1 can guarantee to reach F at least i times and then, after it reaches a fixpoint (at iteration k), it calculates the set from which player 1 can force to reach F.

Each F_i at iteration i of algorithm 2 requires $O(|E|)$ running time for being computed, and since there are $O(|V|)$ iterations, the running time of the algorithm 2 is $O(|E||V|)$.

4