
Algorithmic Game Theory and Applications

Coursework 2: Solution of Question 2

Question 2:
Consider the following restricted kind of Muller game on a graph. The winner is determined as

follows: we are given a set F ⊆ V . Every infinite play π where inf (π) ∩ F 6= ∅ is winning for player
1. All other plays are losing for player 1. Describe an efficient (polynomial time, and as efficient as you
can get it) algorithm for determining the winner and computing a memoryless winning strategy in such
a game.

Note: This winning condition above is called a Büchi-condition.

Solution:
Given a node x, let Pl1(x) be true iff Player 1 controls x. Similarly, Pl2(x) is true iff Player 2

controls x. Let Post(x) be the set of immediate one-step successors of node x.
Given a set of states S, let Force1(S) be the set of states from which Player 1 can force the game

into S. (I.e., this is the solution of a basic reachability game.) Note that Player 1 might not be able to
force the game into any particular state in S, but only into some state in S (i.e., Player 2 cannot avoid
visiting S, but he may get to choose which state in S is visited).

Now we compute Player 1’s winning set Win1 in the game above. Just forcing the game into F is
not enough; we need to visit F infinitely often.

One first needs to compute the unique largest subset F ′ ⊆ F s.t. F ′ ⊆ Win1. In other words,
F ′ = F ∩Win1. Thus we get the following condition:

∀x ∈ F ′. (Pl1(x) ∧ Post(x) ∩ Force1(F
′) 6= ∅) ∨

(Pl2(x) ∧ ∅ 6= Post(x) ⊆ Force1(F
′))

In particular, the largest such set F ′ is unique, since it is the largest fixpoint of a suitable monotone
decreasing function f on a complete lattice (the powerset of the set of states V ).

Let f(S) := {x ∈ S ∩ F | (Pl1(x) ∧ Post(x) ∩ Force1(S) 6= ∅) ∨ (Pl2(x) ∧ ∅ 6= Post(x) ⊆
Force1(S))}.

F ′ can be computed by starting with F ′ = F applying function f (i.e., removing states that do not
satisfy the condition) repeatedly until a fixpoint is reached. Note that several rounds of such refinement
may be needed, since the condition itself depends on the current set.

At the end one obtains the largest fixpoint F ′ of f , i.e., F ′ = f(F ′) and F ′ is the largest set satisfying
this condition. Trivially, F ′ ⊆ F . Moreover, F ′ ⊆ Win1 , and thus F ′ ⊆ F ∩Win1. For the reverse
inclusion observe that f(F ∩Win1) = F ∩Win1, i.e., F ∩Win1 is a fixpoint of f . Since F ′ is the
largest fixpoint of f , we obtain F ∩Win1 ⊆ F ′. To altogether we have F ′ = F ∩Win1 as required.

Finally, we get Win1 = Force1(F
′).

1



Note that even in systems where Player 1 can win from some state, he might not be able to enforce
any particular loop or the recurrence of any particular state in F . Consider the system:

X −− > Y
X −− > Z
Y −− > X
Z −− > X

F = {Y,Z}. Player 1 owns Y,Z and Player 2 owns X . In this case F ′ = {Y, Z} and Win1 =
{X,Y, Z}. However, Player 1 can neither force the infinite recurrence of Y , nor the infinite recurrence
of Z. It is for Player 2 to decide whether X or Y (or both) appear infinitely often. I.e., Player 2 loses,
but has some influence about how he loses.

2


