
Algorithmic Game Theory

and Applications

Lecture 9: Computing solutions

for General Strategic Games:

Part II: Nash Equilibria

Kousha Etessami

Kousha Etessami AGTA: Lecture 9

1

from last time:

Computing Nash Equilibria:
a first clue

Recall “Useful corollary for NEs”, from Lecture 3:

If x∗ is an NE, then if x∗

i (j) > 0 then
Ui(x

∗

−i;πi,j) = Ui(x
∗).

Using this, and adding a condition, we can fully
characterize Nash Equilibria:

Proposition 1 In an n-player game, a profile x∗

is a Nash Equilibrium if and only if there exist
w1, . . . , wn ∈ R, such that the following hold:

1. For all players i, and every πi,j ∈ support(x∗

i),
Ui(x

∗

−i;πi,j) = wi, and

2. For all players i, and every πi,j 6∈ support(x∗

i),
Ui(x

∗

−i;πi,j) ≤ wi.

Note: Any such wi’s necessarily satisfy wi = Ui(x
∗).

Proof Follows easily from what we already know,
particularly 1st claim in the proof of Nash’s theorem.

Kousha Etessami AGTA: Lecture 9

2

using our first clue

• Suppose we somehow know support sets,
support1 ⊆ S1, . . . , supportn ⊆ Sn, for some Nash
Equilibrium x∗ = (x∗

1, . . . , x
∗

n).

• Then, using Proposition 1, to find a NE we only
need to solve the following system of constraints:

1. For all players i, and every πi,j ∈ supporti,
Ui(x−i; πi,j) = wi,

2. For all players i, and every πi,j 6∈ supporti,
Ui(x−i; πi,j) ≤ wi.

3. for i = 1, . . . , n, xi(1) + . . . + xi(mi) = 1.
4. for i = 1, . . . , n, & for j ∈ supporti, xi(j) ≥ 0.
5. for i = 1, . . . , n, & for j 6∈ supporti, xi(j) = 0.

• This system has
∑n

i=1 mi + n variables,
x1(1), . . . , x1(m1), . . . , xn(1), . . . , xn(mn), w1, . . . , wn.

• Unfortunately, for n > 2 players, this is a
non-linear system of constraints.
Let’s come back to the case n > 2 players later.

• Consider the 2-player case: the system is an LP!!
But,
Question: How do we find support1 & support2?
Answer: Just guess!!

Kousha Etessami AGTA: Lecture 9

3

First algorithm to find NE’s in
2-player games

Input: A 2-player strategic game Γ, given by rational
values u1(s, s

′) & u2(s, s
′), for all s ∈ S1 & s′ ∈ S2.

(I.e., the input is (2 · m1 · m2) rational numbers.)

Algorithm:

• For all possible support1 ⊆ S1 & support2 ⊆ S2:

– Check if the corresponding LP has a feasible
solution x∗, w1, . . . , wn. (using, e.g., Simplex).

– If so, STOP: the feasible solution x∗ is a Nash
Equilibrium (and wi = Ui(x

∗)).

Question: How many possible subsets support1 and
support2 are there to try?

Answer: 2(m1+m2)

So, unfortunately, the algorithm requires worst-case
exponential time.

But, at least we have our first algorithm.

Kousha Etessami AGTA: Lecture 9

4

remarks on algorithm 1

• The algorithm immediately yields:
Proposition Every finite 2-player game has a
rational NE. (Furthermore, the rational numbers
are not “too big”, i.e., are polynomial sized.)

• The algorithm can easily be adapted to find not
just any NE, but a “good” one. For example:

Finding a NE that maximizes “(util.) social welfare”:

– For each support sets, simply solve the LP
constraints while maximizing the objective

f(x,w) = w1 + w2 + . . . + wn

– Keep track of best NE encountered, & output
optimal NE after checking all support sets.

• The same algorithm works for any notion of
“good” NE that can be expressed via a linear
objective and (additional) linear contraints: (e.g.:
maximize Jane’s payoff, minimize John’s, etc.)

• Note: This algorithm shows that finding a NE for
2-player games is in “NP”.

Kousha Etessami AGTA: Lecture 9

5

Towards another algorithm for
2-players

Let A be the (m1 × m2) payoff matrix for player 1,
B be the (m2 × m1) matrix for player 2,
w1 be the m1-vector, all entries = w1,
w2 be the m2-vector, all entries = w2.

Note: We can safely assume A > 0 and B > 0: by
adding a large enough constant, d, to every entry
we “shift” each matrix > 0. Nothing essential about
the game changes: payoffs just increase by d.

We can get another, related, characterization of NE’s
by using “slack variables” as follows:

Lemma x∗ = (x∗

1, x
∗

2) is a NE if and only if:

1. There exists a m1-vector y ≥ 0, and w1 ∈ R, such
that Ax∗

2 + y = w1

& for all j = 1, . . . ,m1, x∗

1(j) = 0 or (y)j = 0.
2. There exists a m2-vector z ≥ 0, and w2 ∈ R, such

that Bx∗

1 + z = w2

& for all j = 1, . . . ,m2, x∗

2(j) = 0 or (z)j = 0.

Proof Again follows by the Useful Corollary to Nash:
in a NE x∗ whenever, e.g., x∗

1(j) > 0, U(x∗

−1;π1,j) =
U(x∗). Let (y)j = U(x∗) − U(x∗

−1;π1,j).

Kousha Etessami AGTA: Lecture 9

6

rephrasing the problem

The Lemma gives us some “constraints” that
characterize NE’s:

1. Ax2 + y = w1 and Bx1 + z = w2

2. x1, x2, y, z ≥ 0.

3. x1 and x2 must be probability distributions,
i.e.,

∑m1
j=1 x1(j) = 1 and

∑m2
j=1 x2(j) = 1.

4. Additionally, x1 and y, as well as x2 and z, need
to be “complementary”:
for j = 1, . . . , m1, either x1(j) = 0 or (y)j = 0,
for j = 1, . . . , m2, either x2(j) = 0 or (z)j = 0.
Since everything is ≥ 0, we can write this as

yTx1 = 0 and zTx2 = 0

Kousha Etessami AGTA: Lecture 9

7

continuing the reformulation

Note that, because A > 0 and B > 0, we know that
w1 > 0 and w2 > 0 in any solution.

Using this, we can “eliminate” w1 and w2 from the
constraints as follows: Let x′

2 = (1/w1)x2, y′ =
(1/w1)y, x′

1 = (1/w2)x1, and z′ = (1/w2)z.

Let 1 denote an all 1 vector (of appropriate
dimension).

Suppose we find a solution to

Ax′

2 + y′ = 1 and Bx′

1 + z′ = 1

x′

1, x
′

2, y
′, z′ ≥ 0, (y′)Tx′

1 = 0, and (z′)Tx′

2 = 0.

If, in addition, x′

1 6= 0 or x′

2 6= 0, then, by
complementarity both x′

1 6= 0 and x′

2 6= 0.

In this case we can “recover” a solution x1, x2, y, z,
and w1 and w2 to the original constraints, by
multiplying x′

1 and x′

2 by “normalizing” constants w1

and w2, so that each of x1 = w1x
′

1 and x2 = w2x
′

2

define probability distributions. These normalizing
constants define w1 and w2 in our solution.

Kousha Etessami AGTA: Lecture 9

8

2-player NE’s as a
Linear Complementarity Problem

Let

M =

[

0 A
B 0

]

u =

[

x′

1

x′

2

]

v =

[

y′

z′

]

“Our Goal:” Find a solution u, v, to

Mu + v = 1

such that u, v ≥ 0, and uTv = 0.

This is an intance of a Linear Complementarity Problem,
a classic problem in mathematical programming (see,
e.g., the book [Cottle-Pang-Stone’92]).

But, we already know one solution: u = 0, v = 1.

Our Actual Goal: is to find a solution where u 6= 0.

Wait! Doesn’t “Mu + v = 1” look familiar??

Sure! It’s just a “Feasible Dictionary” (from lect. 6
on Simplex), with “Basis” the variables in vector v.

Question: How do we move from this
“complementary basis” to one where u 6= 0?

Answer: Pivoting!! (in a very selective way)

Kousha Etessami AGTA: Lecture 9

9

sketch of the
Lemke-Howson Algorithm

• Start at the “extra” “complementary Basis” β =
{(v)1, . . . , (v)m}, where m = m1+m2 (with BFS
u = 0, v = 1). A basis β is complementary if
for k ∈ {1, . . . , m}, either (u)k 6∈ β or (v)k 6∈ β
(but not both, since |β| = m).

• For some i, move via pivoting to a “neighboring”
“i-almost complementary” basis β′. A
basis β′ is i-almost complementary if for
k ∈ {1, . . . , m} \ {i}, (u)k 6∈ β′ or (v)k 6∈ β′.

• While (new basis isn’t actually complementary)
– There is a unique j, such that both (u)j and

(v)j are not in the new basis: one of them was
just kicked out of the basis.

– If (u)j was just kicked out, move (v)j into the
basis by pivoting. If (v)j was just kicked, move
(u)j in. (Selective pivot rules assure only one
possible entering/leaving pair each iteration.)

– Newest basis is also i-almost complementary.

• STOP: we have reached a different
complementary basis & BFS. A Nash Equilibrium
is obtained by “normalizing” u = [x′

1 x′

2]
T .

Kousha Etessami AGTA: Lecture 9

10

We are, of course, skipping lots of details related
to “degeneracy”, etc. (similar to complications that
arose in Simplex pivoting).

Question Why should this work?

A key reason: With appropriately selective pivoting
rules, each i-almost complementary Basis (“vertex”)
has 2 neighboring “vertices” unless it is actually a
complementary Basis, in which case it has 1. This
assures that starting at the “extra” complementary
BFS, we will end up at “the other end of the line”.

Let’s see it in pictures:

"extra" complementary BFS "real" NE

"real" NE "real" NE

"real" NE"real" NE

Kousha Etessami AGTA: Lecture 9

11

remarks
• The Lemke-Howson (1964) algorithm has a

“geometric” interpretation.
(See, [von Stengel, Chapter 3, in Nisan et. al.
AGT book, 2007]. Our treatment is closer to
[McKelvey-McLennan’96], see course web page.)

• The algorithm’s correctness gives another proof
of Nash’s theorem for 2-player games only, just
like Simplex’s gives another proof of Minimax (via
LP-duality).

• How fast is the LH-algorithm? Unfortunately,
examples exist requiring exponentially many pivots,
for any permissible pivots (see [Savani-von Stengel’03]).

• Is there a polynomial time algorithm to find a
NE in 2-player games? This is an open problem,
which we will discuss shortly.

• However, finding “good” NE’s that, e.g.,
maximize “social welfare” is NP-hard. Even
knowing whether there is > 1 NE is NP-hard.
([Gilboa-Zemel’89], [Conitzer-Sandholm’03]).

In practice we may want NE’s that optimize some
“goodness”. The NP-hardness of doing so for
many notions of “good”, for me diminishes the
importance of efficiently finding “any lousy” NE.

Kousha Etessami AGTA: Lecture 9

12

games with > 2 players

• Nash himself (1951, page 294) gives a 3 player
“poker” game where the only NE is irrational.
So, it isn’t so sensible to speak of computing an
“exact” NE when the number of players is > 2.

• But we can try to approximate NEs. But there
are different notions of approximate NE:

Definition 1: A mixed strategy profile x is called
a ǫ-Nash Equilibrium, for some ǫ > 0, if ∀ i, and
all mixed strategies yi: Ui(x) ≥ Ui(x−i; yi) − ǫ.

I.e.: No player can increase its own payoff by more
than ǫ by unilaterally switching its strategy.

Definition 2: A mixed strategy profile x is ǫ-
close to an actual NE, for some ǫ > 0, if there is
an actual NE x∗, such that ‖x − x∗‖∞ ≤ ǫ.

I.e.: there is an NE x∗ in which every pure strategy
of every player has a probability in x∗ that is at
most ǫ different from its probability in x.

• Surprisingly, it turns out that these two different
notions of approximation of an NE have VERY
different computational complexity implications.

Kousha Etessami AGTA: Lecture 9

13

What is the complexity of computing an ǫ-NE?

• It turns out that:
(A) computing an NE for 2-player games, and
(B) computing an ǫ-NE for > 2-player games
are reducible to each other.
Both are at least as hard as ANOTHER-
LINE-ENDPOINT: “Find another end-point of
a succinctly given (directed) line graph, with
indegree and outdegree ≤ 1.”.

• [Papadimitriou 1992], defined a complexity class
called PPAD to capture such problems, where
ANOTHER-LINE-ENDPOINT is PPAD-complete.

He took inspiration from ideas in the Lemke-
Howson algorithm and an algorithm by [Scarf’67]
for computing almost fixed points.

• [Chen-Deng’06] and [Daskalakis-Goldberg-
Papadimitriou,’06], showed that computing an NE
in 2-player games, & computing a ǫ-NE in > 2-
player games, respectively, are PPAD-complete.

• However, these results don’t resolve the
complexity of approximating an actual NE in > 2
player games.

Kousha Etessami AGTA: Lecture 9

14

The complexity of computing an actual NE

in games with > 2 players

• For games with > 2 players, approximating an
actual NE, i.e., computing a profile that is ǫ-
close to an actual NE, even for any ǫ < 1/2,
is MUCH harder. It is not even known to be
in NP. The best complexity upper bound we
have is PSPACE (using deep but impractical
algorithms for solving nonlinear systems of
equations [. . .,Canny’88,Renegar’92]).

• [Etessami-Yannakakis’07] showed that if we can
approximate an actual NE even in NP, that would
resolve major open problems in the complexity of
numerical analysis. (Seems unlikely at present.)

[Etessami-Yannakakis’07] showed computing or
approximating an actual NE is FIXP-
complete, where FIXP consists of all problems
reducible to computing a fixed point for
algebraic Brouwer functions defined by operators
{+, ∗,−, /, max, min} and rational constants.

Kousha Etessami AGTA: Lecture 9

15

• Such fixed point computation problems have many
other important applications, in particular, for
computation of market equilibria.

• In turns out that PPAD is exactly the “piecewise
linear” fragment of FIXP, consisting of problems
reducible to Brouwer fixed point problems
defined by algebraic functions using operators
{+,−, max, min}.

• These results are beyond the scope of this course.

If you are interested, for more information see:

K. Etessami and M. Yannakakis, “On the
Complexity of Nash Equilibria and other Fixed
Points”, SIAM Journal on Computing, 39(2), pp.
2531-2597, 2010.

and the references therein.

Kousha Etessami AGTA: Lecture 9

