Algorithmic Game Theory and Applications

Lecture 8: Computing solutions for General Strategic Games: Part 1: dominance and iterated strategy elimination

Kousha Etessami
Let's again consider general finite strategic games.

Definition For $x_i, x'_i \in X_i$, we say x_i **dominates** x'_i, denoted $x_i \succeq x'_i$, if for all $x_{-i} \in X_{-i}$,

$$U_i(x_{-i}; x_i) \geq U_i(x_{-i}; x'_i)$$

We say x_i **strictly dominates** x'_i, denoted $x_i \succ x'_i$, if for all $x_{-i} \in X_{-i}$

$$U_i(x_{-i}; x_i) > U_i(x_{-i}; x'_i)$$

Proposition x_i dominates x'_i if and only if for all pure “counter profiles” $\pi_{-i} \in X_{-i}$

$$\pi_{-i} = (\pi_{1,j_1}, \ldots, \text{empty}, \ldots, \pi_{n,j_n}),$$

$$U_i(\pi_{-i}; x_i) \geq U_i(\pi_{-i}; x'_i).$$

Likewise, x_i strictly dominates x'_i iff for all π_{-i}

$$U_i(\pi_{-i}; x_i) > U_i(\pi_{-i}; x'_i)$$

Proof Another easy “weighted average” argument. \hfill \Box
obviously good strategies: dominant strategies

Definition A mixed strategy $x_i \in X_i$ is **dominant** if for all $x_i' \in X_i$, $x_i \succeq x_i'$. x_i is **strictly dominant** if for all $x_i' \in X_i$ such that $x_i' \neq x_i$, $x_i \succ x_i'$.

Definition For a mixed strategy x_i, its **support**, $\text{support}(x_i)$, is the set of pure strategies $\pi_{i,j}$ such that $x_i(j) > 0$.

Proposition Every dominant strategy x_i is in fact a “weighted average” of pure dominant strategies. I.e., each $\pi_{i,j} \in \text{support}(x_i)$ is also dominant.

Moreover, only a pure strategy can be strictly dominant.

Proof Again, easy “weighted average” argument:

$$U_i(x_{-i}; x_i) = \sum_{j=1}^{m_i} x_i(j) * U_i(x_{-i}; \pi_{i,j}).$$

If x_i is dominant, then for any x_{-i} $U_i(x_{-i}; x_i) \geq U_i(x_{-i}; \pi_{i,j})$, for all j. But then if $x_i(j) > 0$, $U_i(x_{-i}; x_i) = U_i(x_{-i}; \pi_{i,j})$.

If x_i is strictly dominant, it must clearly be equal to the unique pure strategy in its support.
For each player i and each pure strategy $s_j \in S_i$,
 - Check if, for all pure combinations $s \in S = S_1 \times \ldots S_n$, $u_i(s_{-i}; s_j) \geq u_i(s)$.
 - If this is so for all s, output “s_j is a dominant strategy for player i”.

If no such pure strategy found, then there are no dominant strategies.

Same easy algorithm for a strictly dominant strategy.
But there may be no dominant strategies. . .
Definition We say a strategy $x_i \in X_i$ is **strictly dominated** if there exists another strategy x_i' such that $x_i' \succ x_i$. We say x_i is **weakly dominated** if there exists x_i' such that $x_i' \succeq x_i$ and for some $x_{-i} \in X_{-i}$, $U_i(x_{-i} ; x_i') > U_i(x_{-i} ; x_i)$. Clearly, strictly dominated strategies are “bad”: “rational” players would be stupid to play them. Weakly dominated strategies aren’t necessarily as “bad”. It depends on what you think others will play. In particular, there can be Nash Equilibria where everybody is playing a weakly dominated strategy:

$$\begin{bmatrix}
(0,0) & (0,0) \\
(0,0) & (1,1)
\end{bmatrix}$$

Question How can we compute whether a strategy is (strictly) dominated?
Example Consider the following table, showing only Player 1’s payoffs: Is the last row strictly dominated?

\[
\begin{bmatrix}
30 & 0 & 0 \\
0 & 30 & 0 \\
0 & 0 & 30 \\
5 & 5 & 5
\end{bmatrix}
\]
Goal: Determine if $x_i \in X_i$ is (strictly) dominated. To do this, we can use an LP with strict inequalities. For each pure “counter profile” π_{-i}, we add a constraint $C_{\pi_{-i}}(x'_i(1), \ldots, x'_i(n))$, given by:

$$U_i(\pi_{-i}; x'_i) > U_i(\pi_{-i}; x_i)$$

Note that this is a linear constraint: the right hand side is a constant we can compute, and the left hand side is linear in the variables $x'_i(1), \ldots, x'_i(n)$. We also add the constraints $x'_i(1) + \ldots + x'_i(n) = 1$, and $x'_i(j) \geq 0$, for $j = 1, \ldots, n$. x_i is strictly dominated iff this “strict LP” is feasible.

Question: But how do we cope with strict inequalities?
Coping with strict inequalities when checking feasibility of LP constraints

Introduce a new variable $y \geq 0$, to be Maximized, and change constraints to:

$$U_i(\pi - i; x'_i) \geq U_i(\pi_i; x_i) + y$$

Then x_i is strictly dominated if and only if the new LP (with objective “Maximize y”) is feasible and the optimal value for y is > 0 (or unbounded, but in this particular example that can’t happen).

Observe: Any optimal solution x'_i to this revised LP is itself not strictly dominated.

Note: This provides a general recipe for converting the problem of checking feasibility of any set of linear constraints including strict inequalities, to a new LP optimization problem, without strict inequalities.
Recall the games “Guess Half the Average”, and “Give a (matched) dollar to the other player”.

How do we reason about such games? Suppose I “know” that all players are “rational” (i.e., aim to optimize their own expected payoff). Then I might conclude: “Jane will never play a strictly dominated (SD) strategy. So I can eliminate her SD strategies from consideration.” But by eliminating her SDSs, some of my strategies may become SD’ed! Deepening the reasoning, suppose

“I know that she knows that I know that”
Definition (somewhat informal): A fact P is “common knowledge” among all n players if:

- For every player i, “Player i knows P”: call this fact $P_{\langle i \rangle}$.
- And, inductively, for $k \geq 1$, for all players i, and all sequences $s = i_1 \ldots i_k \in \{1, \ldots, n\}^k$, “Player i knows $P_{\langle s \rangle}$”: call this fact $P_{\langle i \ s \rangle}$.

(To be more formal, we would have to delve deeper into “logics of knowledge”. Outside the scope of this class. See, e.g., the book [Fagin-Halpern-Moses-Vardi’95].)

RKN hypothesis: every player’s “rationality” is common knowledge among all players.
iterated SDS elimination algorithm

Assuming the RKN hypothesis, we can safely conduct the following strategy elimination algorithm:

- **While** (some pure strategy $\pi_{i,j}$ is SD’ed)

 eliminate $\pi_{i,j}$ from the game,

 obtaining a new residual game;

Sometimes, a player’s strategy may be uniquely determined by the end of elimination, but certainly not always:

```
(0, 7)  (2, 5)  (7, 0)  (0, 1)
(5, 2)  (3, 3)  (5, 2)  (0, 1)
(7, 0)  (2, 5)  (0, 7)  (0, 1)
(0, 0)  (0, −2) (0, 0) (10, −1)
```

Note: we iteratively eliminate only pure SDSs. There may in fact remain **mixed** SDSs. Before playing any mixed strategy in the residual game we should make sure it is not SD’ed (by, e.g., checking it is an optimal solution of appropriate LP).
There is a more general notion of **rationalizability** ([Bernheim’84, Pierce84]), which says:

- A rational player i should never play a strategy x_i which is “never a best response” to any counter strategy x_{-i} (see below).
- Assuming rationality is common knowledge, we should also iteratively eliminate all strategies that are “never a best response”.

It turns out, for 2-player games, this elimination yields exactly the same residual game as iterated SDS elimination. So the same algorithm applies.

For >2 players, things get more complicated: this equivalence doesn’t hold unless we adopt a different notion of “never a best response” (with respect to any **belief** of player i about other players’ strategies, we will not consider this further.)
weakly vs. strictly dominated strategies

- **Note:** We did not eliminate weakly dominated strategies.
- In fact, the residual game obtained from iterated WDS elimination depends on the order of elimination:

\[
\begin{bmatrix}
(5, 1) & (4, 0) \\
(6, 0) & (3, 1) \\
(6, 4) & (4, 4)
\end{bmatrix}
\]

- This problem does not arise for strictly dominated strategies:

Proposition Iterated elimination of strictly dominated strategies produces the same final residual game regardless of the order in which strategies are eliminated.

Proof If a pure strategy is strictly dominated, it will remain strictly dominated even after another strictly dominated pure strategy is removed.
Computing Nash Equilibria: a first clue

Recall “Useful corollary for NEs”, from Lecture 3:

If x^* is an NE and $x^*_i(j) > 0$ then
$$U_i(x^*_{-i}; \pi_{i,j}) = U_i(x^*).$$

Using this, we can fully characterize Nash Equilibria:

Proposition In an n-player game, a profile x^* is a Nash Equilibrium if and only if there exist $w_1, \ldots, w_n \in \mathbb{R}$, such that the following hold:

1. For all players i, and every $\pi_{i,j} \in \text{support}(x^*_i)$,
 $$U_i(x^*_{-i}; \pi_{i,j}) = w_i,$$
 and

2. For all players i, and every $\pi_{i,j} \notin \text{support}(x^*_i)$,
 $$U_i(x^*_{-i}; \pi_{i,j}) \leq w_i.$$

Note: such w_i’s necessarily satisfy $w_i = U_i(x^*)$.

Proof Easy from what we already know.

Food for thought: Can you use this to find a NE?