
Algorithmic Game Theory

and Applications

Lecture 8: Computing solutions for General

Strategic Games: Part 1: dominance and

iterated strategy elimination

Kousha Etessami

a partial-order on strategies: dominance

Let’s again consider general finite strategic games.
Definition For xi , x

′
i ∈ Xi , we say xi dominates x ′i , denoted

xi � x ′i , if for all x−i ∈ X−i ,

Ui(x−i ; xi) ≥ Ui(x−i ; x
′
i)

We say xi strictly dominates x ′i , denoted xi � x ′i , if for all
x−i ∈ X−i Ui(x−i ; xi) > Ui(x−i ; x

′
i)

Proposition xi dominates x ′i if and only if for all pure
“counter profiles” π−i ∈ X−i

π−i = (π1,j1 , . . . , empty, . . . , πn,jn),

Ui(π−i ; xi) ≥ Ui(π−i ; x
′
i).

Likewise, xi strictly dominates x ′i iff for all π−i

Ui(π−i ; xi) > Ui(π−i ; x
′
i)

Proof Another easy “weighted average” argument.

obviously good strategies: dominant strategies
Definition A mixed strategy xi ∈ Xi is dominant if for all
x ′i ∈ Xi , xi � x ′i . xi is strictly dominant if for all x ′i ∈ Xi such
that x ′i 6= xi , xi � x ′i .
Definition For a mixed strategy xi , its support, support(xi),
is the set of pure strategies πi ,j such that xi(j) > 0.
Proposition Every dominant strategy xi is in fact a “weighted
average” of pure dominant strategies. I.e., each
πi ,j ∈ support(xi) is also dominant.
Moreover, only a pure strategy can be strictly dominant.
Proof Again, easy “weighted average” argument:

Ui(x−i ; xi) =

mi∑
j=1

xi(j) ∗ Ui(x−i ; πi ,j).

If xi is dominant, then for any x−i Ui(x−i ; xi) ≥ Ui(x−i ; πi ,j),
for all j . But then if xi(j) > 0, Ui(x−i ; xi) = Ui(x−i ; πi ,j).
If xi is strictly dominant, it must clearly be equal to the unique
pure strategy in its support.

So, easy algorithm to find dominant strategies

I For each player i and each pure strategy sj ∈ Si ,
I Check if, for all pure combinations

s ∈ S = S1 × . . . Sn, ui (s−i ; sj) ≥ ui (s).
I If this is so for all s, output “sj is a dominant strategy

for player i”.

I If no such pure strategy found, then there are no
dominant strategies.

Same easy algorithm for a strictly dominant strategy.
But there may be no dominant strategies. . ..

obviously bad: strictly dominated strategies

Definition We say a strategy xi ∈ Xi is strictly dominated if
there exists another strategy x ′i such that x ′i � xi . We say xi is
weakly dominated if there exists x ′i such that x ′i � xi and for
some x−i ∈ X−i , Ui(x−i ; x

′
i) > Ui(x−i ; xi).

Clearly, strictly dominated strategies are “bad”: “rational”
players would be stupid to play them.
Weakly dominated strategies aren’t necessarily as “bad”. It
depends on what you think others will play. In particular, there
can be Nash Equilibria where everybody is playing a weakly
dominated strategy: [

(0, 0) (0, 0)
(0, 0) (1, 1)

]
Question How can we compute whether a strategy is
(strictly) dominated?

Example Consider the following table, showing only Player 1’s
payoffs: Is the last row strictly dominated?

30 0 0
0 30 0
0 0 30
5 5 5

finding strictly dominated strategies via LP

Goal: Determine if xi ∈ Xi is (strictly) dominated.

To do this, we can use an LP with strict inequalities.
For each pure “counter profile” π−i , we add a constraint
Cπ−i

(x ′i (1), . . . , x ′i (n)), given by:

Ui(π−i ; x
′
i) > Ui(π−i ; xi)

Note that this is a linear constraint: the right hand side is a
constant we can compute, and the left hand side is linear in
the variables x ′i (1), . . . , x ′i (n).
We also add the constraints x ′i (1) + . . . + x ′i (n) = 1, and
x ′i (j) ≥ 0, for j = 1, . . . , n.
xi is strictly dominated iff this “strict LP” is feasible.

Question: But how do we cope with strict inequalities?

Coping with strict inequalities when checking

feasibility of LP constraints
I Introduce a new variable y ≥ 0, to be Maximized, and

change constraints to:

Ui(π−i ; x
′
i) ≥ Ui(πi ; xi) + y

I Then xi is strictly dominated if and only if the new LP
(with objective “Maximize y”) is feasible and the optimal
value for y is > 0 (or unbounded, but in this particular
example that can’t happen).

I Observe: Any optimal solution x ′i to this revised LP is
itself not strictly dominated.

I Note: This provides a general recipe for converting the
problem of checking feasibility of any set of linear
constraints including strict inequalities, to a new LP
optimization problem, without strict inequalities.

common knowledge and strategy elimination

I Recall the games “Guess Half the Average”, and “Give a
(matched) dollar to the other player”.

I How do we reason about such games? Suppose I “know”
that all players are “rational” (i.e., aim to optimize their
own expected payoff). Then I might conclude: “Jane will
never play a strictly dominated (SD) strategy. So I can
eliminate her SD strategies from consideration.” But by
eliminating her SDSs, some of my strategies may become
SD’ed! Deepening the reasoning, suppose

“I know that she knows that I know that”.

I Definition (somewhat informal): A fact P is
“common knowledge” among all n players if:

I For every player i , “Player i knows P”: call this fact P〈i〉.

I And, inductively, for k ≥ 1, for all players i , and all
sequences s = i1 . . . ik ∈ {1, . . . , n}k ,
“Player i knows P〈s〉”: call this fact P〈i s〉.

(To be more formal, we would have to delve deeper into

“logics of knowledge”. Outside the scope of this class. See,

e.g., the book [Fagin-Halpern-Moses-Vardi’95].)

I RKN hypothesis: every player’s “rationality” is common
knowledge among all players.

iterated SDS elimination algorithm
Assuming the RKN hypothesis, we can safely conduct the
following strategy elimination algorithm:

I While (some pure strategy πi ,j is SD’ed)
eliminate πi ,j from the game,
obtaining a new residual game;

Sometimes, a player’s strategy may be uniquely determined by
the end of elimination, but certainly not always:

(0, 7) (2, 5) (7, 0) (0, 1)
(5, 2) (3, 3) (5, 2) (0, 1)
(7, 0) (2, 5) (0, 7) (0, 1)
(0, 0) (0,−2) (0, 0) (10,−1)

Note: we iteratively eliminate only pure SDSs. There may in
fact remain mixed SDSs. Before playing any mixed strategy in
the residual game we should make sure it is not SD’ed (by,
e.g., checking it is an optimal solution of appropriate LP).

remarks
I There is a more general notion of rationalizability

([Bernheim’84,Pierce84]), which says:
I A rational player i should never play a strategy xi which

is “never a best response” to any counter strategy x−i
(see below).

I Assuming rationality is common knowledge, we should
also iteratively eliminate all strategies that are “never a
best response”.

I It turns out, for 2-player games, this elimination yields
exactly the same residual game as iterated SDS
elimination. So the same algorithm applies.

I For > 2 players, things get more complicated: this
equivalence doesn’t hold unless we adopt a different
notion of “never a best response” (with respect to any
“belief ” of player i about other players’ strategies,
we will not consider this further.)

weakly vs. strictly dominated strategies

I Note: We did not eliminate weakly dominated strategies.

I In fact, the residual game obtained from iterated WDS
elimination depends on the order of elimination: (5, 1) (4, 0)

(6, 0) (3, 1)
(6, 4) (4, 4)

I This problem does not arise for strictly dominated

strategies:
Proposition Iterated elimination of strictly dominated
strategies produces the same final residual game
regardless of the order in which strategies are eliminated.
Proof If a pure strategy is strictly dominated, it will
remain strictly dominated even after another strictly
dominated pure strategy is removed.

Computing Nash Equilibria: a first clue
Recall “Useful corollary for NEs”, from Lecture 3:

If x∗ is an NE and x∗i (j) > 0 then
Ui(x

∗
−i ; πi ,j) = Ui(x

∗).

Using this, we can fully characterize Nash Equilibria:
Proposition In an n-player game, a profile x∗ is a Nash
Equilibrium if and only if there exist w1, . . . ,wn ∈ R, such that
the following hold:

1. For all players i , and every πi ,j ∈ support(x∗i),
Ui(x

∗
−i ; πi ,j) = wi , and

2. For all players i , and every πi ,j 6∈ support(x∗i),
Ui(x

∗
−i ; πi ,j) ≤ wi .

Note: such wi ’s necessarily satisfy wi = Ui(x
∗).

Proof Easy from what we already know.

Food for thought: Can you use this to find a NE?

