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“real world example”:
the diet problem

• You are a fastidious eater. You want to make sure
that every day you get enough of each vitamin:
vitamin 1, vitamin 2,...., vitamin m.

• You are also frugal, and want to spend as little as
possible.

• There are n foods available to eat: food 1, food
2, ...., food n.

• Each unit of food j has ai,j units of vitamin i.

• Each unit of food j costs cj.

• Your daily need for vitamin i is bi units.

• Assume you can buy each food in fractional
amounts. (This makes your life much easier.)

• How much of each food would you eat per day
in order to have all your daily needs of vitamins,
while minimizing your cost?
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A Linear Programming Example

Find (x, y) ∈ R
2 so as to:

Maximize 2x + y

Subject to conditions (“constraints”):

x + y ≤ 6
x ≤ 5
y ≤ 4
x, y ≥ 0

x

y

(2,4)

(5,1)

2 x + y = 112 x + y = 8

x + y <= 6

y <= 4

x <= 5

Much of this simple “geometric intuition” generalizes
nicely to higher dimensions. (But be very careful!
Things get complicated very quickly!)
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The General Linear Program

Definition: A Linear Programming or Linear Optimization

problem instance
(f, Opt, C)

consists of

1. A linear objective function f : R
n 7→ R, given by:

f(x1, . . . , xn) = c1 x1 + c2 x2 + . . . + cn xn + d

where we assume the coefficients ci and constant
d are rational numbers.

2. An optimization criterion:
Opt ∈ {Maximize, Minimize}.

3. A set (or “system”) C(x1, . . . , xn) of m
linear constraints, or linear inequalities/equalities,

Ci(x1, . . . , xn), i = 1, . . . , m,
where each Ci(x) has the form:

ai,1 x1 + ai,2 x2 + . . . + ai,n xn ∆ bi

where ∆ ∈ {≤,≥,=},
and where ai,j’s and bi’s are rational numbers.
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What does it mean to solve an
LP?

For a constraint Ci(x1, . . . , xn), we say a vector
v = (v1, . . . , vn) ∈ R

n satisfies Ci(x) if, plugging in
v for the variables x = (x1, . . . , xn), the constraint
Ci(v) holds true. E.g., (3, 6) satisfies −x1 + x2 ≤ 7.

A vector v ∈ R
n is called a solution to the system

C(x), if v satisfies every constraint Ci ∈ C. I.e.,
C1(v) ∧ . . . ∧ Cm(v) holds true.

Let K(C) ⊆ R
n denote the set of all solutions to

the system C(x). We say C is feasible if K(C) is
not empty.

An optimal solution, for Opt = Maximize

(Minimize), is some x∗ ∈ K(C) such that

f(x∗) = max
x∈K(C)

f(x)

(respectively, f(x∗) = minx∈K(C) f(x)).

Given an LP problem (f, Opt, C), our goal in principle
is to find an “optimal solution”.

Oops!! There may not be an optimal solution!
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Things that can go wrong

At least two things can go wrong when looking for
an optimal solution:

1. There may be no solutions at all! I.e., C is not
feasible, i.e., K(C) is empty. Consider:

Maximize x
Subject to:
x ≤ 3, and x ≥ 5

2. max / minx∈K(C) f(x) may not exist! because
f(x) is unbounded above/below in K(C).
Consider:

Maximize x
Subject to:
x ≥ 5

So, we revise our goals to handle these cases.

Note: If we allowed strict inequalities, e.g., x < 5,
there would have been yet another problem:

Maximize x
Subject to:
x < 5
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The LP Problem Statement

Given an LP problem instance (f, Opt, C) as input,
output one of the following three:

1. “The problem is Infeasible.”

2. “The problem is Feasible But Unbounded.”

3. “An Optimal Feasible Solution (OFS) exists.
One such optimal solution is x∗ ∈ R

n.
The optimal objective value is f(x∗) ∈ R.”

Oops!! It seems yet another thing could go wrong:

“What if every optimal solution x∗ ∈ R
n is irrational?

How can we “output” irrational numbers?
Likewise, what if the Opt value f(x∗) is irrational?”

Fact

As we will soon see, this problem never arises.
The above three answers cover all possibilities,
and furthermore, as long as all our coefficients
and constants are rational, if an OFS exists,
there will be a rational OFS x∗ and the optimal
value f(x∗) will also be rational.
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Simplified forms for LP problems

1. In principle, we only need to consider
Maximization, because

min
x∈K

f(x) = −max
x∈K

−f(x)

(either side is unbounded if and only if both are.)

2. In principle, we only need an objective function
f(x1, . . . , xn) = xi, for some xi, because we can

• Introduce new variable x0. Add constraint
f(x) = x0 to the constraint set C.

• Make the new objective “Optimize x0”.

3. We don’t need equality constraints, because
α = β if and only if (α ≤ β and α ≥ β).

4. We don’t need “α ≥ b”, where b ∈ R,
because α ≥ b if and only if −α ≤ −b.

5. We can constrain every variable xi to be xi ≥ 0:
Introduce two variables x+

i , x−

i for each variable
xi. Replace each occurence of xi by (x+

i − x−

i ),
and add the constraints x+

i ≥ 0, x−

i ≥ 0.
(N.B. can’t do both (2.) and (5.) together.)
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A lovely but terribly inefficient
algorithm for LP

Input: LP instance (x0, Opt, C(x0, x1, . . . , xn)).

1. For i = n downto 1

(a) Rewrite every constraint involving xi as either:
α ≤ xi or as xi ≤ β

(one of the two is possible). Let these be:
α1 ≤ xi,. . ., αk ≤ xi ; xi ≤ β1,. . ., xi ≤ βr

(Retain these constraints, Hi, for later.)
(b) Remove Hi, i.e., all constraints involving xi.

Replace them with all constraints:
αj ≤ βl , j = 1, . . . , k, and l = 1, . . . , r.

2. Only x0 (or no variable) remains. All constraints
have the forms aj ≤ x0, x0 ≤ bl, or aj ≤ bl,
where aj’s and bl’s are constants. It’s easy
to check “feasibility” & “boundedness” for this
one(or zero)-variable LP, and to find an optimal
x∗

0 if it exists.

3. Once you have x∗

0, plug it into H1. Solve for x∗

1.
Then use x∗

0, x
∗

1 in H2 to solve for x∗

2,
. . . , use x∗

0, . . . , x
∗

i−1 in Hi to solve for x∗

i . . . .
x∗ = (x∗

0, . . . , x
∗

n) is an optimal feasible solution.
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remarks on the lovely algorithm

• This algorithm was first discovered by Fourier
(1826). It was rediscovered in the 1900’s, by
Motzkin (1936) among others.

• It is called Fourier-Motzkin Elimination, and
can be viewed as a generalization of Gaussian

Elimination, used for solving systems of linear
equalities.

• Why is Fourier-Motzkin so inefficient? In the
worst case, if every variable xi is involved in
every constraint, each iteration of the “For loop”
squares the number of constraints. So, toward
the end we could have roughly m2n

constraints!!

• Let’s recall Gaussian Elimination. It is much nicer
and does not suffer from this explosion.
(You would expect nothing less from Gauss!)

• In 1947, Dantzig invented the celebrated
Simplex Algorithm for LP. It can be viewed as
a much more refined generalization of Gaussian
Elimination. Next time, Simplex!
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further remarks

• Immediate Corollaries of Fourier-Motzkin:
Corollary 1: The three possible “answers” to an
LP problem do cover all possibilities.
(In particular, unlike “Maximize x; x < 5”, If an
LP has a “Supremum” it has a “Maximum”.)

Corollary 2: If an LP has an OFS, then it has a
rational OFS, x∗, and f(x∗) is also rational.
Proof: We used only addition, multiplication, &
division by rationals to arrive at the solution.

• Although Fourier-Motzkin is bad in the worst case,
it can still be quite useful.
It can be used to remove redundant variables.
Redundant constraints could also be removed,
and sometimes the worst-case may not arise.

• Generalizations of Fourier-Motzkin are actually
used in competitive tools (e.g., [Pugh,’92]) to
solve “Integer Linear Programming”, where we
seek an optimal solution x∗ not in R

n, but in Z
n.

ILP is a much harder problem! (NP-complete.)

• For ordinary LP however, Fourier-Motzkin can’t
compete with Simplex.

Kousha Etessami AGTA: Lecture 5



11

• Food for Thought: Think about what kinds of
clever heuristics and hacks you could use during
Fourier-Motzkin to keep the number of constraints
as small as possible. E.g., In what order would
you try to eliminate variables?
(Clearly, any order is fine, as long as x0 is last.)
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