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Lecture 3: Nash’'s Theorem
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The Brouwer Fixed Point
Theorem

We will use the following to prove Nash's Theorem.

Theorem(Brouwer, 1909) Every continuous function
f D — D mapping a compact and convex,
nonempty subset D C R™ to itself has a “fixed
point”, i.e., there is * € D such that f(z*) = z*.

Explanation:

e A “continuous” function is intuitively one whose
graph has no “jumps’. l.e., any “sufficiently little
(non-zero) change” in x can change f(x) by at
most “as little (non-zero) change as desired".

e For our current purposes, we don't need to know
exactly what “compact and convex’ means.

(See the appendix of this lecture for definitions.)
We only state the following fact:

Fact The set of profiles X = X7 x ... x X,, is a
compact and convex subset of R™.
(Where m = X' m;, recalling that m; = |.5;|.)
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Simple cases of Brouwer’s
Theorem

To see a simple example of what Brouwer's theorem
says, consider the interval [0,1] = {zx | 0 < x < 1}.

0, 1] is compact and convex.
(More generally, [0, 1]™ is compact and convex.)

For a continuous f : [0,1] — [0,1], you can
“visualize” why the theorem is true:

The “visual proof” in the 1-dimensional case:
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For f :[0,1]° — [0,1]?, the theorem is already far
less obvious: “the crumpled sheet experiment”.
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brief remarks

e Brouwer's Theorem is a deep and important result
in topology.

e |t is not easy to prove, and we won't prove it.

e |f you are desperate to see a proof, there are many.
See, e.g., any of these:

[Milnor'66] (Differential Topology). (uses, e.g.,
Sard’s Theorem).

Scarf'73,  Border'89], with  Economics
viewpoints (they use Sperner's Lemma).
[Rotman’88] (Algebraic Topology). (uses
homology, etc.)

[Papadimitriou’s Berkeley Lecture Notes '03]
(uses Sperner's Lemma).

Possibly my favorite proof:

[D. Gale'79] , uses the fact that HEX (a finite,
extensive form game of perfect information, re-
invented by Nash) is a “win-lose” game, i.e.,
any n-dimensional Hex game has a winner (i.e.,
can not end in a draw).
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proof of Nash’s theorem

Proof: (Nash's 1951 proof)

We will define a continuous function f : X — X,
where X = X; x ... x X,,, and we will show that if
f(x*) = x* then x* = (x7,...,2}) must be a Nash
Equilibrium.

By Brouwer’'s Theorem, we will be done.

(In fact, it will turn out that x* is a Nash Equilibrium
if and only if f(z*) = x*.)

We start with a claim.
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Claim: A profile z* = (x7,...,2}) € X is a Nash
Equilibrium if and only if, for every player ¢, and
every pure strategy m; ;, j € S,

Us(x™) > Ug(2™ ;5 75 5)

proof of claim: If =* is a NE then, it is obvious by
definition that U;(x*) > U;(z*,, 7 ;).

For the other direction: by calculation it is easy to
see that for any mixed strategy z; € X,

Ui(z* i25) = > ai(j) * Ui(z* 57 5)
j=1

|.e., the payoff of Player i is the “weighted average”
of the payoffs of each of its pure strategies, 7,
weighted by the probability x;(j) of that strategy.

By assumption, U;(z*) > U,(z* ;;m; ;), for all 5.

So, clearly U;(x*) > Uj;(x* ;;x;), for any x; € X,
because a “weighted average” of things no bigger
than U;(x*) can't be bigger than U;(z™).

Hence, each z is a best response strategy to z™ ..
In other words, =* is a Nash Equilibrium. .
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So, rephrasing our goal, we want to find
r* = (x],...,x}) such that

I.e., such that

Ui(zZ;;mi5) — Us(2") <0
for all players 2 € N, and all j =1,...,m;.

For a mixed profile x = (1, x2,...,2,) € X: let
ij(x) = max{0, Ui(z_i; m; ;) — Us(2)}

Intuitively, ¢; j(x) measures “how much better off”
player ¢ would be if he/she picked 7; ; instead of x;
(and everyone else remained unchanged).
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Define f : X — X as follows: For x =

(Z’l,wg, ,Zlfn) c X, let
f($) — (55/1755/27 R 756;7,)
where for all 7, and 7 =1,...,m;,

1N 331(]) -+ Spi,j(x)
wild) = 14> 02 wik()

Facts:
1. If z € X, then f(x) = («,...,2]) € X.

n

2. f:X — X is continuous.
(These facts are not hard to check.)

*

Thus, by  Brouwer, there exists =« =
(27, x5,...,2%) € X such that f(z*) = z*.

Now we have to show =™ is a NE.
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For each 7, and for y = 1,...,m;,

_ 7 (j) + pij(z”)
1+ ZZL:Zl <P1:,k($*)

z; (J)
thus,

A+ inla®) = 210) + pii(a”)
k=1

hence,

2 (5) D win(z™) = ¢ij(z")
k=1

We will show that in fact this implies ; ;(2*) must
be equal to 0 for all j.
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Claim: For any mixed profile x, for each player i,
there is some j such that z;(j) > 0 and ¢, j(z) = 0.

Proof of claim: For any x € X,

pi,j(r) = max{0, Uj(x_i;m; ;) — Ui(x)}

Since Uj;(x) is the “weighted average” of
Ui(x_;;m; j)'s, based on the “weights” in z;, there
must be some j used in z;, i.e., with x;(j) > 0,
such that U;(x_;;m; ;) is no more than the weighted
average. l.e.,

Ui(x—s;m;,5) < Us()

l.e.,

Uq;(:r;_z-;m,j) — UZ(.I') <0

Therefore,

pij(x) = max{0, Uj(z_;; m; ;) — Ui(z)} = 0
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Thus, for such a j, z¥(j) > 0 and

But, since ¢;k(x*)'s are all > 0, this means
eir(@*)=0forall k=1,...,m;. Thus,

For all players ¢, and for j = 1,...,m;,
Ui(z*) = Us(2Z;;mi 5)

Q.E.D. (Nash’s Theorem)

In fact, since U;(z*) is the “weighted average” of
Ui(z*,;,m; ;)'s, we see that

Useful Corollary for Nash Equilibria:

Ui(z*) = U;(z*;, 7 ;), whenever z7(j) > 0.
Rephrased: In a Nash Equilibrium z*, if 2(j) > 0
then U,(z* ;7 ;) = Ui(x*); i.e., each such m; ; is
itself a “best response” to z* ..

This is a subtle but very important point.
It will be useful later when we try to compute NE's.
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Remarks

e The proof using Brouwer gives ostensibly no clue
how to compute a Nash Equilibrium. It just says
it exists!

e We will come back to the question of computing
Nash Equilibria in general games later in the
course.

e \We start next time with a special case: 2-player
zero-sum games (e.g., of the Rock-Paper-Scissor’s
variety). These have an elegant theory (von
Neumann 1928), predating Nash.

e To compute solutions for 2p-zero-sum games,
Linear Programming will come into play.
Linear Programming is a very important tool in
algorithms and optimization. Its uses go FAR
beyond solving zero-sum games. So it will be a
good opportunity to learn about LP.
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extra reading:
evolutionary biology as a game

e One way to view how we might “arrive” at a Nash
equilibrium is through a process of evolution.

e John Maynard Smith (1972-3,82) introduced
game theoretic ideas into evolutionary biology
with the concept of an Evolutionarily Stable Strategy.

e Your extra reading is from Straffin(1993) which
gives a very amusing introduction to this.

e Intuitively, a mixed strategy can be viewed as
percentages in a population that exhibit different
behaviors (strategies).

e Their behaviors effect each other’s survival, and
thus each strategy has a certain survival value
dependent on the strategy of others.

e The population is in “evolutionary equilibrium” if
no “mutant” strategy could invade it and “take
over’ .
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a glossary for your reading

e Definition A 2-player game is symmetric if S; =
So, and for all s1,s5 € S, u1(s1, $2) = ua(s2, s1).

e Definition In a 2p-sym-game, mixed strategy z]
is an Evolutionarily Stable Strategy (ESS), if:

1. x7 is a best response to itself, i.e., x* = (x7, x7])
is a symmetric Nash Equilibrium, &

2. If 2} # x7 is any other best response to z7,
then Uy (2}, 27) < Uy(a7, 2}).

Nash (1951, p. 289) also proves that every
symmetric game has a symmetric NE, (z7, 7).
(However, not every symmetric game has a ESS.)

e Given a profile x € X in an n-player game, the
“(purely utilitarian) social welfare” is:

e A profile x € X is pareto efficient (a.k.a., pareto
optimal) if there is no other profile 2’ such that
U;(x) < U;(x) for all players i, and such that for
some player k, Up(x) < Ug(x').

e (Prisoner’'s Dilemma shows that NE's need not
optimize social welfare nor be Pareto optimal.)
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How hard is it to detect an ESS?

e |t turns out that even deciding whether a 2-player
symmetric game has an ESS is a hard problem:
it is both NP-hard and coNP-hard (and the best

upper bound we know is X%'):

K. Etessami & A. Lochbihler, “The computational
complexity of Evolutionarily Stable Strategies”,
International Journal of Game Theory, vol. 31(1),

pp. 93-113, 2008.

e For simple 2 x 2 2-player symmetric games, you
will see from your reading (in Straffin) that there
is a simple way to detect whether there is an ESS,
and if so to compute one.

e There is a huge literature on ESS and on
“Evolutionary Game Theory”. See, e.g.:

— J. Weibull, Evolutionary Game Theory, 1997.

— Chapter 29, “Computational evolutionary game
theory” (by Suri), in Nisan, et. al.,
Algorithmic Game Theory, 2007.
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Appendix: continuity,
compactness, convexity

Definition For z, y € R", dist(z,) = /i, (2(1) — y(i))?
denotes the Euclidean distance between points x and y.

A function f : D C R" +— R" is continuous at a point
x € D if for all € > 0, there exists & > 0, such that for all
y € D: if dist(x,y) < d then dist(f(x), f(y)) < e.

f is called continuous if it is continuous at every point x € D.

Definition A set K C R" is convex if for all z,y € K and
all A € [0,1], A+ (1 — Ny € K.

Rather than stating a general definition of compactness for
arbitrary topological spaces, we use the following fact as a
definition, restricted to Euclidean space:

Fact A set K C R" is compact if and only if it is closed and
bounded. (So, we need to define “closed” and "bounded”.)

Definition A set K C R" is bounded iff there is some non-
negative integer M, such that K C [— M, M]".
(i.e., K “fits inside” a finite n-dimensional box.)

Definition A set K C R" is closed iff for all sequences
g, L1, T2, ..., where for all © > 0, x; € K, if there exists
x € R"™ such that x = lim;_ x; (i.e., for all € > 0,
there exists integer kK > 0 such that dist(x, z,,,) < € for all
m > k), then z € K.

(In other words, if a sequence of points is in K then its limit
(if it exists) must also be in K.)
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