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The Brouwer Fixed Point
Theorem

We will use the following to prove Nash’s Theorem.

Theorem(Brouwer, 1909) Every continuous function
f : D 7→ D mapping a compact and convex,
nonempty subset D ⊆ R

m to itself has a “fixed
point”, i.e., there is x∗ ∈ D such that f(x∗) = x∗.

Explanation:

• A “continuous” function is intuitively one whose
graph has no “jumps”. I.e., any “sufficiently little
(non-zero) change” in x can change f(x) by at
most “as little (non-zero) change as desired”.

• For our current purposes, we don’t need to know
exactly what “compact and convex” means.

(See the appendix of this lecture for definitions.)

We only state the following fact:

Fact The set of profiles X = X1 × . . . × Xn is a
compact and convex subset of Rm.
(Where m = Σn

i=1mi, recalling that mi = |Si|.)

Kousha Etessami AGTA: Lecture 3



2

Simple cases of Brouwer’s
Theorem

To see a simple example of what Brouwer’s theorem
says, consider the interval [0, 1] = {x | 0 ≤ x ≤ 1}.

[0, 1] is compact and convex.
(More generally, [0, 1]n is compact and convex.)

For a continuous f : [0, 1] 7→ [0, 1], you can
“visualize” why the theorem is true:

The “visual proof” in the 1-dimensional case:

1

0
0 1x

f(x)
y

x=y

For f : [0, 1]2 7→ [0, 1]2, the theorem is already far
less obvious: “the crumpled sheet experiment”.
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brief remarks

• Brouwer’s Theorem is a deep and important result
in topology.

• It is not very easy to prove, and we won’t prove
it.

• If you are desperate to see a proof, there are many.
See, e.g., any of these:

– [Milnor’66] (Differential Topology). (uses, e.g.,
Sard’s Theorem).

– [Scarf’67 & ’73, Kuhn’68, Border’89], uses
Sperner’s Lemma.

– [Rotman’88] (Algebraic Topology). (uses
homology, etc.)

– Possibly my favorite proof:
[D. Gale’79] , uses the fact that HEX (a finite,
extensive form game of perfect information, re-
invented by Nash) is a “win-lose” game, i.e.,
any n-dimensional Hex game has a winner (i.e.,
can not end in a draw).
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proof of Nash’s theorem

Proof: (Nash’s 1951 proof)

We will define a continuous function f : X 7→ X ,
where X = X1 × . . . × Xn, and we will show that if
f(x∗) = x∗ then x∗ = (x∗

1, . . . , x
∗
n) must be a Nash

Equilibrium.

By Brouwer’s Theorem, we will be done.

(In fact, it will turn out that x∗ is a Nash Equilibrium
if and only if f(x∗) = x∗.)

We start with a claim.
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Claim: A profile x∗ = (x∗
1, . . . , x

∗
n) ∈ X is a Nash

Equilibrium if and only if, for every player i, and
every pure strategy πi,j, j ∈ Si,

Ui(x
∗) ≥ Ui(x

∗
−i; πi,j)

proof of claim: If x∗ is a NE then, it is obvious by
definition that Ui(x

∗) ≥ Ui(x
∗
−i, πi,j).

For the other direction: by calculation it is easy to
see that for any mixed strategy xi ∈ Xi,

Ui(x
∗
−i;xi) =

mi∑

j=1

xi(j) ∗ Ui(x
∗
−i;πi,j)

I.e., the payoff of Player i is the “weighted average”
of the payoffs of each of its pure strategies, j,
weighted by the probability xi(j) of that strategy.

By assumption, Ui(x
∗) ≥ Ui(x

∗
−i;πi,j), for all j.

So, clearly Ui(x
∗) ≥ Ui(x

∗
−i; xi), for any xi ∈ Xi,

because a “weighted average” of things no bigger
than Ui(x

∗) can’t be bigger than Ui(x
∗).

Hence, each x∗
i is a best response strategy to x∗

−i.
In other words, x∗ is a Nash Equilibrium.
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So, rephrasing our goal, we want to find
x∗ = (x∗

1, . . . , x
∗
n) such that

Ui(x
∗
−i; πi,j) ≤ Ui(x

∗)

i.e., such that

Ui(x
∗
−i; πi,j) − Ui(x

∗) ≤ 0

for all players i ∈ N , and all j = 1, . . . , mi.

For a mixed profile x = (x1, x2, . . . , xn) ∈ X : let

ϕi,j(x) = max{0, Ui(x−i;πi,j) − Ui(x)}

Intuitively, ϕi,j(x) measures “how much better off”
player i would be if he/she picked πi,j instead of xi

(and everyone else remained unchanged).
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Define f : X 7→ X as follows: For x =
(x1, x2, . . . , xn) ∈ X , let

f(x) = (x′
1, x

′
2, . . . , x

′
n)

where for all i, and j = 1, . . . ,mi,

x′
i(j) =

xi(j) + ϕi,j(x)

1 +
∑mi

k=1 ϕi,k(x)

Facts:

1. If x ∈ X , then f(x) = (x′
1, . . . , x

′
n) ∈ X .

2. f : X 7→ X is continuous.

(These facts are not hard to check.)

Thus, by Brouwer, there exists x∗ =
(x∗

1, x
∗
2, . . . , x

∗
n) ∈ X such that f(x∗) = x∗.

Now we have to show x∗ is a NE.
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For each i, and for j = 1, . . . , mi,

x∗
i (j) =

x∗
i (j) + ϕi,j(x

∗)

1 +
∑mi

k=1 ϕi,k(x∗)

thus,

x∗
i (j)(1 +

mi∑

k=1

ϕi,k(x
∗)) = x∗

i (j) + ϕi,j(x
∗)

hence,

x∗
i (j)

m1∑

k=1

ϕi,k(x
∗) = ϕi,j(x

∗)

We will show that in fact this implies ϕi,j(x
∗) must

be equal to 0 for all j.
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Claim: For any mixed profile x, for each player i,
there is some j such that xi(j) > 0 and ϕi,j(x) = 0.

Proof of claim: For any x ∈ X ,

ϕi,j(x) = max{0, Ui(x−i;πi,j) − Ui(x)}

Since Ui(x) is the “weighted average” of
Ui(x−i; πi,j)’s, based on the “weights” in xi, there
must be some j used in xi, i.e., with xi(j) > 0,
such that Ui(x−i;πi,j) is no more than the weighted
average. I.e.,

Ui(x−i;πi,j) ≤ Ui(x)

I.e.,

Ui(x−i; πi,j) − Ui(x) ≤ 0

Therefore,

ϕi,j(x) = max{0, Ui(x−i;πi,j) − Ui(x)} = 0
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Thus, for such a j, x∗
i (j) > 0 and

x∗
i (j)

m1∑

k=1

ϕi,k(x
∗) = 0 = ϕi,j(x

∗)

But, since ϕi,k(x
∗)’s are all ≥ 0, this means

ϕi,k(x
∗) = 0 for all k = 1, . . . ,mi. Thus,

For all players i, and for j = 1, . . . , mi,

Ui(x
∗) ≥ Ui(x

∗
−i; πi,j)

Q.E.D. (Nash’s Theorem)

In fact, since Ui(x
∗) is the “weighted average” of

Ui(x
∗
−i, πi,j)’s, we see that

Useful Corollary for Nash Equilibria:
Ui(x

∗) = Ui(x
∗
−i, πi,j), whenever x∗

i (j) > 0.

Rephrased: In a Nash Equilibrium x∗, if x∗
i (j) > 0

then Ui(x
∗
−i;πi,j) = Ui(x

∗); i.e., each such πi,j is
itself a “best response” to x∗

−i.

This is a subtle but very important point.
It will be useful later when we try to compute NE’s.
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Remarks

• The proof using Brouwer gives ostensibly no clue
how to compute a Nash Equilibrium. It just says
it exists!

• We will come back to the question of computing
Nash Equilibria in general games later in the
course.

• We start next time with a special case: 2-player
zero-sum games (e.g., of the Rock-Paper-Scissor’s
variety). These have an elegant theory (von
Neumann 1928), predating Nash.

• To compute solutions for 2p-zero-sum games,
Linear Programming will come into play.
Linear Programming is a very important tool in
algorithms and optimization. Its uses go FAR
beyond solving zero-sum games. So it will be a
good opportunity to learn about LP.
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supplementary reading:
evolutionary biology as a game

• One way to view how we might “arrive” at a Nash
equilibrium is through a process of evolution.

• John Maynard Smith (1972-3,’82) introduced
game theoretic ideas into evolutionary biology
with the concept of an Evolutionarily Stable Strategy.

• Your extra reading is from Straffin(1993) which
gives a very amusing introduction to this.

• Intuitively, a mixed strategy can be viewed as
percentages in a population that exhibit different
behaviors (strategies).

• Their behaviors effect each other’s survival, and
thus each strategy has a certain survival value
dependent on the strategy of others.

• The population is in “evolutionary equilibrium” if
no “mutant” strategy could invade it and “take
over”.
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a glossary for your reading

• Definition A 2-player game is symmetric if S1 =
S2, and for all s1, s2 ∈ S1, u1(s1, s2) = u2(s2, s1).

• Definition In a 2p-sym-game, mixed strategy x∗
1

is an Evolutionarily Stable Strategy (ESS), if:

1. x∗
1 is a best response to itself, i.e., x∗ = (x∗

1, x
∗
1)

is a symmetric Nash Equilibrium, &
2. If x′

1 6= x∗
1 is any other best response to x∗

1,
then U1(x

′
1, x

′
1) < U1(x

∗
1, x

′
1).

Nash (1951, p. 289) also proves that every
symmetric game has a symmetric NE, (x∗

1, x
∗
1).

(However, not every symmetric game has a ESS.)

• Given a profile x ∈ X in an n-player game, the
“(purely utilitarian) social welfare” is:

U1(x) + U2(x) + . . . + Un(x).

• A profile x ∈ X is pareto efficient (a.k.a., pareto
optimal) if there is no other profile x′ such that
Ui(x) ≤ Ui(x

′) for all players i, and such that for
some player k, Uk(x) < Uk(x

′).

• (Prisoner’s Dilemma shows that NE’s need not
optimize social welfare nor be Pareto optimal.)
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How hard is it to detect an ESS?

• It turns out that even deciding whether a 2-player
symmetric game has an ESS is hard. It is both
NP-hard and coNP-hard, and contained in ΣP

2 :

K. Etessami & A. Lochbihler, “The computational

complexity of Evolutionarily Stable Strategies”, International

Journal of Game Theory, vol. 31(1), pp. 93–113, 2008.

(And, more recently, it has been shown ΣP
2 -

complete, see:

V. Conitzer, “The exact computational complexity of

Evolutionary Stable Strategies”, in Proceeding of Web and

Internet Economics (WINE), pages 96-108, 2013. )

• For simple 2 × 2 2-player symmetric games, there
is a simple way to detect whether there is an
ESS, and if so to compute one (described in the
supplementary reading from Straffin).

• There is a huge literature on ESS and on
“Evolutionary Game Theory”. See, e.g., the
following book: J. Weibull, Evolutionary Game

Theory, 1997.
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Appendix: continuity,
compactness, convexity

Definition For x, y ∈ R
n, dist(x, y) =

q

Pn

i=1(x(i) − y(i))2

denotes the Euclidean distance between points x and y.

A function f : D ⊆ R
n 7→ R

n is continuous at a point

x ∈ D if for all ǫ > 0, there exists δ > 0, such that for all

y ∈ D: if dist(x, y) < δ then dist(f(x), f(y)) < ǫ.

f is called continuous if it is continuous at every point x ∈ D.

Definition A set K ⊆ R
n is convex if for all x, y ∈ K and

all λ ∈ [0, 1], λx + (1 − λ)y ∈ K.

Rather than stating a general definition of compactness for

arbitrary topological spaces, we use the following fact as a

definition, restricted to Euclidean space:

Fact A set K ⊆ R
n is compact if and only if it is closed and

bounded. (So, we need to define “closed” and “bounded”.)

Definition A set K ⊆ R
n is bounded iff there is some non-

negative integer M , such that K ⊆ [−M, M ]n.

(i.e., K “fits inside” a finite n-dimensional box.)

Definition A set K ⊆ R
n is closed iff for all sequences

x0, x1, x2, . . ., where for all i ≥ 0, xi ∈ K, if there exists

x ∈ R
n such that x = limi→∞ xi (i.e., for all ǫ > 0,

there exists integer k > 0 such that dist(x, xm) < ǫ for all

m > k), then x ∈ K.

(In other words, if a sequence of points is in K then its limit

(if it exists) must also be in K.)
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