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Matching markets: multi-item unit-demand auctions

(Now start thinking of, e.g., Google’s Sponsored Search Auctions.)

A set B of n bidders (Advertisers);
A set Q, of k items (Advertisement slots on your Google page).

Each bidder wants to buy at most one item (at most one ad on a web
page),
i.e., each bidder has unit demand.

Each bidder i ∈ B has a valuation, vi ,j ≥ 0, for each item j .

Each item j has a reserve price, rj ≥ 0, below which it won’t be sold.

A (feasible) price vector is any vector p ≥ r .

At prices p, the demand set of bidder i is
Di (p) := {j ∈ Q | vi ,j − pj = maxj ′∈Q(vi ,j ′ − pj ′) ≥ 0}.
The payoff (utility), ui , to a bidder i who gets item j and pays pj is
ui = vi ,j − pj . (And ui = 0 if bidder i gets nothing.)
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Market equilibrium in matching markets

A partial matching, µ, is a partial one-to-one function from B to Q.

A price vector p, together with a partial matching µ, is called a
Market price equilibrium, (p, µ), if:

For all matched i ∈ B, µ(i) ∈ Di (p).
If i ∈ B is unmatched in µ, then either Di (p) = ∅ or for all j ∈ Di (p),
vi,j − pj = 0.
For any unmatched item j 6∈ µ(B), pj = rj .

Theorem ([Shapley-Shubik,1971])

1 A market equilibrium always exists.

2 The set P of market equilibrium price vectors p form a lattice in Rk
≥0.

The least element of this price lattice has very special properties.
(For maximizing revenue, sellers would prefer the greatest element, but...)
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Computing market equilibrium: an ascending price auction

[Demange-Gale-Sotomayor,1986]

1 Assume (only for simplicity) that valuations vi ,j are all integers.

2 Set the initial price vector, p0, to the reserve prices, p0 := r .

3 At round t, when current prices are pt , each bidder i declares their
demand set, Di (pt).

4 Does there exist an overdemanded set of items, S ⊆ Q, i.e., where
0 < |S | < |{i ∈ B | ∅ 6= Di (pt) ⊆ S}| ? If not, STOP: By Hall’s
theorem, a market equilibrium at prices pt exists (and a corresponding
matching can be found by maximum matching).

5 If so, find a minimal over-demanded set S ; ∀ j ∈ S let pt+1
j := pt

j + 1;

∀ k ∈ Q \ S , let pt+1
k := pt

k ; let t := t + 1; go to step 3.

Theorem ([DGS’86])

This auction algorithm always finds a market equilibrium. Moreover, the
equilibrium it finds is the least price equilibrium.

Kousha Etessami Lecture 19 4 / 22



Some algorithmic considerations

Can we compute this auction outcome efficiently? Yes.

We can compute (minimal) over-demanded sets in P-time.

We don’t need to increment prices by 1 in each iteration.
(We can raise all prices in the over-demanded set until the demand
set of one of the respective bidders enlarges beyond S .)

It turns out that this is essentially isomorphic to the Primal-Dual
Hungarian Algorithm for finding a maximum-weight matching in a
weighted bipartite graph [Kuhn’55], which runs in P-time.
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More lovely facts about this lovely auction

As we said, the DGS auction always computes the minimum price
equilibrium, p∗.

In fact, it turns out that the payments, p∗, are precisely the VCG
payments!

Therefore, the mechanism is incentive compatible, and for every
bidder it is a dominant strategy to specify its true valuations.

Moreover, this mechanism is even group strategy-proof, meaning that
no strict subset of bidders who can collude have an incentive to
misrepresent their true valuations.
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Generalized Second Price (GSP) auctions

The GSP auction looks somewhat similar to Vickrey’s second-price auction.

1 Assume there are k advertisement slots on the web page.
We assume there is a preference total ordering on the advertisement
slots 1, . . . , k : all bidders prefer slot 1 to 2, slot 2 to 3, etc.
(It can be assumed (for simplicity) that associated with each slot j is
a clickthrough rate, αj , and that for j < j ′, we have αj ≥ αj ′ .)

2 Each advertiser i , chooses a single bid value, bi ∈ R≥0. (This is a bid
associated with a click on their ad.)

3 The advertisers are ordered (from highest to smallest) based on their
bid bi . Let b(j) denote the bid that is ranked j ’th.

4 If advertiser i is ranked j < k , then it gets its ad in position j , and
pays, per click, b(j+1), the bid by the advertiser in position j + 1.

5 If there are fewer bidders than slots, then the advertiser in the last
position pays a reserve price r (per click).
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What are the incentive properties of the GSP auction?

It is not quite VCG (but it is related).
Given equivalent bids by all bidders, GSP payments are at least as
high (or higher) than VCG.

Truth telling is not a dominant strategy under GSP.

But ([Edelman-Ostrovsky-Schwarz’07],[Varian’07]) if bidding is
modeled as a repeated game, then it is argued bids will eventually
reach an locally envy-free equilibrium. Such equilibria of the GSP
auction map directly to market equilibria of a matching market.

Thus, we again have a lattice structure to price equilibria, and there is
a minimum equilibrium in which payoffs correspond precisely to VCG.
(But it is not a dominant strategy of GSP, just one equilibrium.)

If we end up at any other equilibrium, the revenue of the seller is
higher than VCG. (Not bad for Google.)

Kousha Etessami Lecture 19 8 / 22



Complications: budget limits

In actual GSP ad auctions, bidders are asked to submit not just a
value bid saying how much they value a clickthrough, but also a
budget limit, which specifies the maximum they are willing to actually
pay (which may be strictly less).

This creates a discontinuity in the player’s utility function, and in fact
(in degenerate cases), market equilibria need not exist.

However, when bids and budgets satisfy certain basic non-degeneracy
conditions: (1) market equilibria do exist, (2) the DGS auction
algorithm works, and finds incentive compatible prices and allocations.
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What if our objective was revenue maximization?

Suppose we are interested in devising a single-item auction to maximize
(expected) revenue. Suppose each bidder i ’s valuation vi ≥ 0 is
independently distributed according to a distribution Di . Suppose each
bidder i submits a bid bi ≥ 0 for the item. We want the auction to satisfy:

non-negative payments: the price pi that each bidder i is asked to
pay is non-negative: pi ≥ 0.

individual rationality: bi − pi ≥ 0, for all bidders i .
(A (sub-)truthful agent gets non-negative utility.)

Incentive compatibility: For every bidder, i , it is a dominant
strategy to bid their true valuation, bi := vi .

Vickrey’s auction of course satifies these criteria. Suppose our goal is to
find an auction satisfying these criteria that maximizes the expected
revenue: the expected value of the selling price.

Question: Can we do this?

Yes! Under suitable assumptions on
distributions Di ([Myerson’81]).
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A very limited special case of Myerson’s Theorem

Theorem (a very limited special case of [Myerson,1981])

Consider a single-item auction with n ≥ 1 bidders, where all bidders have
independent valuations, each uniformly distributed in the interval [0, vmax],
and each bidder i submits a bid bi ≥ 0.
Among all individually-rational auctions with non-negative payments that
are incentive compatible, the following auction is the unique one that
maximizes expected revenue:

Set the reserve price to r := vmax
2 .

Sell the item to the highest bidder if the highest bid price is ≥ r .
Otherwise, don’t sell the item.

If sold, charge that highest bidder the following price:
max{the second highest bid price, r}.

For multi-item auctions, revenue maximization is a much more difficult
challenge (including from a computational complexity perspective:
NP-hard even in very very simple settings).
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A formal framework for mechanism design

Formally, the input to a mechanism design problem can be specified by
giving three things:

An environment, E , in which the game designer operates.

A choice function, f , which describes the designer’s preferred
outcomes in the given environment.

A solution concept, Sol, which describes the kinds of strategy
profiles of games (such as their (Bayes) Nash Equilibria) which will be
considered “solutions” in which the desired choice function should be
implemented.

We describe each of these three inputs separately, using single-item
auctions as a running example to illustrate each concept.

Once this is done, we will be able to state the mechanism design problem
more formally.
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environments

An environment, E = (N,C ,Θ, u, p,M), consists of:

A set N = {1, . . . , n} of players.

A set C of “outcomes”.
auction example: C = {(i , pr) ∈ N × R≥0}, where outcome (i , pr)
means player i wins and pays pr.

A cartesian product Θ = Θ1 ×Θ2 × . . .×Θn, of types where each Θi

is a set of possible types for player i .

We assume that the type θi ∈ Θi of player i determines its “utility
function” over outcomes. So, we have ui : Θi × C → R.
auction example:

ui (vi , (i ′,pr)) =

{
0 if i 6= i ′

vi − pr if i = i ′

Note: the “type”, vi , of player i determines its utility function, ui .

p : Θ→ [0, 1] is a common prior joint distribution on types of players.

M is a set of “Mechanisms”... Question: What is a Mechanism?
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What is a Mechanism?

Each Mechanism, M ∈M, has the form M = (A1, . . . ,An, g), where
Ai is a set of actions for player i , and g : A1 × . . .× An → C , is a
outcome function from strategy profiles to outcomes.
auction example: the action sets Ai are the possible bids that each
player i could bid, and g gives a function that maps a profile of bids
to an “outcome” of who wins the item and at what price. Such
outcome functions can be constrained by the definition of the set M.
For example, we may only allow top bidders to get the item, and we
may ask for at most the maximum bid price to be paid by whoever
gets the item.

Note that a mechanism M = (A1, . . . ,An, g) ∈M together with an
environment E , gives a full description of a (Bayesian) game,
ΓM,E = (N,A, ũ,Θ, p), where the payoff function ũi : A×Θi → R for
player i is now given by: ũi (a1, . . . , an, θi ) := ui (g(a1, . . . , an), θi ).
Note: A (pure) strategy for player i in this Bayesian setting is a function
si : Θi → Ai , i.e., a function from its types to its actions.
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choice functions

Given an environment E , a choice function

f : Θ 7→ 2C

specifies what set of outcomes the designer would prefer if it knew exactly
what type (i.e., what utility (payoff) function) each player has.
single-item auction example: the choice function of the designer could be,
e.g., to give the item to a person who values it most:

f (v1, . . . , vn) = {(i , pr) | i ∈ arg max
i ′

vi ′}
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solution concepts

We lastly need the notion of a solution concept, which specifies what kind
of solutions of a game we are trying to implement the choice function in.
Such solutions might be, e.g., (Bayes) Nash Equilibria, or more strong
conditions such as a Dominant Strategies Equilibrium.

Given an environment E , a solution concept is given by a mapping Sol,
whose domain is M×Θ, and such that for each mechanism
M = (A1, . . . ,An, g) and each tuple θ = (θ1, . . . , θn) of types,
Sol((A1, . . . ,An, g), θ) ∈ 2S , where S = S1 × . . .× Sn, and where
Si = {si : Θi → Ai} is the strategy set of player i .

auction example: in the auction example we may wish to implement the
choice in dominant strategies. In this setting, we ask that Sol(M, θ) be the
set of strategy combinations (s1, . . . , sn) such that each si : Θi → Ai is a
dominant strategy for player i in the (Bayesian) game ΓM,E .
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finally: the mechanism design problem statement

The mechanism design problem can now be stated as follows:

Given environment E = (N,C ,Θ, u, p,M), a choice function
f , and a solution concept Sol, find a mechanism M =
(A1, . . . ,An, g) ∈ M such that for all tuples θ ∈ Θ of types,
Sol(M, θ) is a non-empty set, and for all s ∈ Sol(M, θ), g(s(θ)) ∈
f (θ).

If such a mechanism M exists, we say M Sol-implements choice function
f in environment E . We then also say f is Sol-implementable in E .
of mechanism design. See books
[Mas-Colell-Whinston-Green’95,Osborne-Rubinstein’94].
Note: As already indicated by the Gibbard-Satterthwaite Theorem, in
some environments, some social choice functions, such as truth revelation,
are not (dominant-strategy)-implementable.
A result that is at first surprising, called the “Revelation Principle”, says
that everything that is dominant-strategy implementable can in fact be
implemented as a truth revelation dominant strategy.

Kousha Etessami Lecture 19 17 / 22



The Revelation Principle

Let Dom be the solution concept where s = (s1, . . . , sn) ∈ Dom(M, θ) if
and only if for every player i , si : θi → Ai is a dominant strategy in ΓM,E .
Such a profile s is called a dominant strategy equilibrium (DSE) of ΓM,E .
Similarly, define BNE to be the solution concept where s ∈ BNE (M, θ) iff
s is a Bayesian Nash Equilibrium of ΓM,E .
In environment E = (N,C ,Θ, u, p,M), a mechanism M is called a direct
revelation mechanism if M = (Θ1, . . . ,Θn, g). I.e., players’ strategies
si : Θi → Θi amount to “announcing” their type. Players can lie, but.....

Theorem (Revelation Principle)

Suppose f is Dom-implemented (BNE-implemented, respectively) by
M = (A1, ...,An, g) in environment E = (N,C ,Θ, u, p,M).
Then in environment (N,C ,Θ, u, p,M′), where M′ consists of all direct
revelation mechanisms, there is some M ′ = (Θ1, . . . ,Θn, g

′) ∈M′ such
that for all θ ∈ Θ, s∗ ∈ Dom(M ′, θ) (respectively s∗ ∈ BNE(M ′, θ)), where
s∗i (θi ) = θi for all i . And, ∃s ∈ Dom(M, θ), (∃s ∈ BNE(M, θ),
respectively), such that ∀θ ∈ Θ, g ′(s∗(θ)) = g(s(θ)) ∈ f (θ).

Kousha Etessami Lecture 19 18 / 22



interpreting the revelation principle

The revelation principle (RP), for now restricted to the dominant-strategy
case, says that if a mechanism M Dom-implements a choice function f
then there is another mechanism M ′ which Dom-implements f , where
each player revealing their true type is a DSE in ΓM′,E . We then say M ′

truthfully Dom-implements f .

(An analogous version can be stated for implementation in BNE.)

Note the contrast to the Gibbard-Satterthwaite Theorem, which says that
there is no non-dictatorial social choice function for player’s preferences
among 3 or more alternatives for which “truth revealing” is implementable
by dominant strategies.
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proof of the revelation principle

Proof

Let’s prove it in the case of dominant strategy implementation.
Suppose that some indirect mechanism M = (A1, . . . ,An, g),
Dom-implements f .
Suppose s ′ = (s ′1, . . . , s

′
n) is a dominant strategy profile in the game ΓM,E ,

where s ′i : Θi → Ai .

In other words, each player i will prefer to play s ′i (θi ) if his type is θi ,
regardless of what the other strategies s−i of other players are.

Now we create a direct revelation mechanism M ′ = (Θ1, . . . ,Θn, g
′) by

using a mediator.
The mediator says to each player i : “If you tell me your type, and if you
say your type is θi then I will play strategy s ′i (θi ) for you.”
Clearly, since s ′i was dominant for M, telling the truth, θi , will be dominant
for the new direct revelation mechanism M ′, and it will implement the
same choice function f .
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In the Algorithmic Mechanism Design problem, we will additionally want
to insist that functions like the choice function, f , and the outcome
function g : A1 × . . .× An → C of the mechanism M = (A1, . . . ,An, g)
that implements f , should be efficiently computable; but importantly, it is
often necessary to adjust the choice function f to allow more outcomes
(e.g., not necessarily optimal outcomes, but perhaps only approximately
optimal ones), in order to allow efficient computability (and maintain
implementability).
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THE END

(hope you enjoyed the course)
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