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Reminder: Food for Thought: sponsored search auctions

Question

How should advertisement slots on your Google search page be auctioned?

You may have already heard that Google uses a so-called
“Generalized Second Price Auction” mechanism to do this.

But why do they do so? Is there any “better” way?

Before we can even begin to address such questions (which are in fact
largely outside the scope of this course), it is useful to get a better
understanding of the broader picture in economic theory within which
auction theory and mechanism design operate.
Again, reference reading for today’s lecture includes: Chapters 9, 11, 12,
13, & 28 of AGT book.
Also very useful are the revelant chapters of the excellent textbook:
A. Mas-Colell, M. Whinston, & J. Green, Microeconomic Theory, 1995.
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Walrasian Market Equilibrium

An Exchange Economy

n agents, and m divisible goods (commodities, serices, etc.).

Each agent i starts with an initial endowment of goods,
wi = (wi ,1, . . . ,wi ,m) ∈ Rm

≥0.

Each agent i has a utility function, ui (x), that defines how much it
“likes” a given bundle x ∈ Rm

≥0 of goods.
Assume utility functions satisfy certain “reasonable” conditions:

(1) Continuity; (2) Quasi-concavity; (3) Non-satiation

Assume agent endowments satisfy certain “reasonable conditions”.
E.g., each agent has a positive endowment of every good. (Much less
suffices: e.g., each agent has something another agent “wants”, and
the graph of this is strongly-connected.)
Give a price vector, p ≥ Rm

≥0, each agent i has an optimal demand
set, Di (p) ⊆ Rm

≥0. This is the set of bundles of goods, xi , that
maximize agent i ’s utility, and which i can afford to buy at prices p
by selling its endowment wi at prices p.
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Background: existence of market equilibrium

Market (price) equilibrium for an exchange economy

A non-zero price vector, p∗ ≥ 0, together with bundles, x∗i , of goods for
each agent i , constitutes a market (price) equilibrium for an exchange
economy, if at prices p∗, for every agent i , x∗i is an optimal demand
bundle, and moreover with these demands the market clears (i.e., basically
supply = demand). In other words:

For all agents i , x∗i ∈ Di (p). (Every agent optimizes utility at prices p)∑
i x∗i ≤

∑
i wi . (Demands do not exceed supply for any commodity.)

Furthermore, for all goods j , if (
∑

i x∗i )j < (
∑

i wi )j , then p∗j = 0.

(In other words, only free goods can have excess supply.)

Theorem ([Arrow-Debreu, 1954])

Every exchange economy has a market (price) equilibrium.

Their proof is non-algorithmic. It crucially uses a fixed point theorem.

Kousha Etessami () Lecture 18 4 / 18



Background: existence of market equilibrium

Market (price) equilibrium for an exchange economy

A non-zero price vector, p∗ ≥ 0, together with bundles, x∗i , of goods for
each agent i , constitutes a market (price) equilibrium for an exchange
economy, if at prices p∗, for every agent i , x∗i is an optimal demand
bundle, and moreover with these demands the market clears (i.e., basically
supply = demand). In other words:

For all agents i , x∗i ∈ Di (p). (Every agent optimizes utility at prices p)∑
i x∗i ≤

∑
i wi . (Demands do not exceed supply for any commodity.)

Furthermore, for all goods j , if (
∑

i x∗i )j < (
∑

i wi )j , then p∗j = 0.

(In other words, only free goods can have excess supply.)

Theorem ([Arrow-Debreu, 1954])

Every exchange economy has a market (price) equilibrium.

Their proof is non-algorithmic. It crucially uses a fixed point theorem.

Kousha Etessami () Lecture 18 4 / 18



Background: existence of market equilibrium

Market (price) equilibrium for an exchange economy

A non-zero price vector, p∗ ≥ 0, together with bundles, x∗i , of goods for
each agent i , constitutes a market (price) equilibrium for an exchange
economy, if at prices p∗, for every agent i , x∗i is an optimal demand
bundle, and moreover with these demands the market clears (i.e., basically
supply = demand). In other words:

For all agents i , x∗i ∈ Di (p). (Every agent optimizes utility at prices p)∑
i x∗i ≤

∑
i wi . (Demands do not exceed supply for any commodity.)

Furthermore, for all goods j , if (
∑

i x∗i )j < (
∑

i wi )j , then p∗j = 0.

(In other words, only free goods can have excess supply.)

Theorem ([Arrow-Debreu, 1954])

Every exchange economy has a market (price) equilibrium.

Their proof is non-algorithmic. It crucially uses a fixed point theorem.
Kousha Etessami () Lecture 18 4 / 18



two quotes

Kamal Jain (MSR), 2006: “If your laptop can’t find it, then
neither can the market.”

Mas-Colell,Whinston, & Green, 1995 (standard graduate text in
Microeconomic Theory): “A characteristic feature [of] economics
is that for us the equations of equilibrium constitute the center
of our discipline. By contrast, other sciences put more emphasis
on the dynamic laws of change. The reason... is that economists
are good at recognizing a state of equilibrium, but are poor at
predicting precisely how an economy in disequilibrium will
evolve...”

Or, to paraphrase: “Modern economic theory is largely non-algorithmic.”
By contrast, computer science is very good at “dynamics” (algorithmics).

A sizable portion of Algorithmic Game Theory research, broadly speaking,
aims to remedy this difficiency of modern economic theory.
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A side question: Do we really need money?

Note that money is itself extraneous to the goals of agents in an
exchange economy. Why do we need it?

Couldn’t we achieve the same “goals” of the market without money?

In other words, couldn’t we organize a “barter economy” to conduct a
simultaneous exchange of goods between all agents, in a way that
achieves Pareto optimal bundles of goods for every agent?

Recall: Pareto optimal means that there is no other reallocation of
everyone’s goods in which everybody’s utility is at least as high, and
somebody’s utility is strictly higher.

Note: the The First Fundamental Theorem of Welfare Economics says that
allocations of goods in any market equilibrium are Pareto optimal.

It is intuitively clear that such an exchange is difficult to do without money.

We shall see that some things become impossible to do without money.

Kousha Etessami () Lecture 18 6 / 18



A side question: Do we really need money?

Note that money is itself extraneous to the goals of agents in an
exchange economy. Why do we need it?

Couldn’t we achieve the same “goals” of the market without money?

In other words, couldn’t we organize a “barter economy” to conduct a
simultaneous exchange of goods between all agents, in a way that
achieves Pareto optimal bundles of goods for every agent?

Recall: Pareto optimal means that there is no other reallocation of
everyone’s goods in which everybody’s utility is at least as high, and
somebody’s utility is strictly higher.

Note: the The First Fundamental Theorem of Welfare Economics says that
allocations of goods in any market equilibrium are Pareto optimal.

It is intuitively clear that such an exchange is difficult to do without money.

We shall see that some things become impossible to do without money.

Kousha Etessami () Lecture 18 6 / 18



A side question: Do we really need money?

Note that money is itself extraneous to the goals of agents in an
exchange economy. Why do we need it?

Couldn’t we achieve the same “goals” of the market without money?

In other words, couldn’t we organize a “barter economy” to conduct a
simultaneous exchange of goods between all agents, in a way that
achieves Pareto optimal bundles of goods for every agent?

Recall: Pareto optimal means that there is no other reallocation of
everyone’s goods in which everybody’s utility is at least as high, and
somebody’s utility is strictly higher.

Note: the The First Fundamental Theorem of Welfare Economics says that
allocations of goods in any market equilibrium are Pareto optimal.

It is intuitively clear that such an exchange is difficult to do without money.

We shall see that some things become impossible to do without money.

Kousha Etessami () Lecture 18 6 / 18



Background: Impossibility theorems in social choice theory

Let C be a set of outcomes, and let L be the set of total orderings on
C . A social choice function is a function f : Ln → C .

f can be strategically manipulated by player (voter) i , if for some
≺1, . . . ,≺n∈ L, we have c ≺i c ′, and c = f (≺1, . . . ,≺n), and there
exists some other ordering ≺′i such that c ′ = f (≺1, . . . ,≺′i , . . . ,≺n).

f is called incentive compatible (strategy-proof) if it can not be
strategically manipulated by anyone.

f is a dictatorship if there is some player i such that for all
≺1, . . . ,≺n, f (≺1, . . . ,≺n) = ci , where ci is the maximum outcome
for player i , i.e., ∀b 6= ci , b ≺i ci .

Theorem [Gibbard-Satterthwaite’73,’75]

If |C | ≥ 3, and f : Ln 7→ C is an incentive compatible social choice function
which is onto C (i.e., all outcomes are possible), then f is a dictatorship.
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Arrow’s Theorem

The Gibbard-Satterthwaite Theorem is closely related to the following
famous theorem:

Arrow’s Impossibility Theorem

There is no “really good” way to aggregate people’s preference orders
(over ≥ 3 alternatives) into a societal preference order.

“Really good” here means it should satisfy the following three criteria:

Unanimity: if everybody has the same preference order, then that
should become the societal preference order.

Independence of irrelevant alternatives: The societal preference
between any pair of outcomes a and b should depend only on the
preference between a and b of all individuals, and not on their
preferences for other alternatives c 6= a, b.

Non-dictatorship: no individual’s preferences should dictate the
societies preferences.
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Let’s bring money back into the picture

Let V be the set of “voters”.

Suppose that instead of a “preference ordering”, each voter i ∈ V has
a (non-negative) “monetary value function”: vi : C → R≥0, where
vi (c) says how much money a win by candidate c is worth for voter i .

Suppose we want to choose a candidate c∗ that maximizes the total
value for the entire voter population, i.e., we want to choose:

f (v1, . . . , vn) = c∗ ∈ arg max
c

∑
i∈V

vi (c)

But voters could be dishonest and lie about their true value function.
(Voter i can declare a different non-negative valuation function v ′i .)

Question: Can we incentivize the voters to tell the truth?

Yes, if we are allowed to ask them to pay money!
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The Vickrey-Clarke-Groves (VCG) Mechanism

Each voter i ∈ V is asked to submit their nonnegative valuation
function, v ′i . (v ′i may or may not be i ’s actual valuation function vi .)

The mechanism then computes an optimal candidate,
f (v ′1, . . . , v

′
n) := c∗, that maximizes total value:

f (v ′1, . . . , v
′
n) := c∗ ∈ arg max

c

∑
k∈V

v ′k(c)

This candidate c∗ is chosen as the winner of the election.

Moreover, each voter i has to pay an amount pi (c∗) to the
mechanism, which is independent of v ′i , defined by:

pi (c∗) := (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′))−
∑

j∈V \{i}

v ′j (c∗)

Key Point: These payments align the incentives of all voters: each voter i ,
even knowing the valuation functions v ′j declared by voters j 6= i , will want
to declare a function v ′i that yields a winner c∗ = f (v ′1, . . . , v

′
n) which

maximizes vi (c∗) +
∑

k∈V \{i} v ′k(c∗). So, it should declare v ′i := vi .
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Basic properties of VCG

Proposition

Let f (v ′1, . . . , v
′
n) = c∗ be the outcome chosen as the winner by the VCG

mechanism, based on their declared (non-negative) valuation functions
v ′1, . . . , v

′
n. Then for every voter i both its payment pi (c∗) and its

purported utility u′i (c∗) = v ′i (c∗)− pi (c∗) are non-negative, i.e.:

1.) pi (c∗) ≥ 0 and 2.) u′i (c∗) := v ′i (c∗)− pi (c∗) ≥ 0

Proof: 1.) pi (c∗) = (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′))−
∑

j∈V \{i}

v ′j (c∗) ≥ 0.

2.) v ′i (c∗)− pi (c∗) = (
∑
j∈V

v ′j (c∗))− (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′)))

= (maxc∈C

∑
i∈V

v ′i (c))− (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′)) ≥ 0

(The last ≥ 0 holds because we require v ′j (c) ≥ 0 for all j and all c ∈ C .)
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VCG is incentive-compatible (i.e., strategy-proof)

Theorem ([Vickrey, 1961],[Clarke, 1971], [Groves,1973])

The VCG mechanism is incentive compatible (i.e., strategy proof).
In other words, declaring their true valuation function vi is a (weakly)
dominant strategy for all players i .

Proof: Suppose players declare valuations v ′1, . . . , v
′
n. Suppose player i ’s

true valuation is vi . Let c∗ = f (vi , v
′
−i ), and let c ′′ = f (v ′i , v

′
−i ). Recall

c∗ ∈ arg maxc vi (c) +
∑

k∈V \{i} v ′k(c). In other words, for all c ∈ C ,

vi (c∗) +
∑

k∈V \{i} v ′k(c∗) ≥ vi (c) +
∑

k∈V \{i} v ′k(c). Thus, ui (c∗) =

vi (c∗)− pi (c∗) = vi (c∗) + (
∑

k∈V \{i}

v ′k(c∗))− (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′))

≥ vi (c ′′) + (
∑

k∈V \{i}

v ′k(c ′′))− (max
c ′∈C

∑
j∈V \{i}

v ′j (c ′))

= vi (c ′′)− pi (c ′′) = ui (c ′′).
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Example: Vickrey’s second-price sealed-bid auction

Recall: There is a single item being auctioned.

Each bidder, i , declares its own monetary value (price), bi , for getting
the item.

The highest bidder, say i∗, gets the item, and pays the second highest
bid price, say p∗ = bj .

The overall utility for bidder i∗ who got the item is vi∗ − p∗.
Both the valuation and payment (and thus utility) for all others who
don’t get it is 0.

Recall: Theorem: the Vickrey auction is incentive compatible: every
bidder i ’s dominant strategy is to declare its true valuation vi .

In fact, this is precisely the VCG mechanism, applied in the setting of
a single-item auction, where the set of “candidates”, now
“outcomes”, is given by “who gets the item?”.
The machanism makes sure that the item goes to the person who
values it most, because that maximizes

∑
i vi (outcome).
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An ascending price auction closely related to Vickrey’s

In practice, Vickrey’s sealed-bid auction are often not used.

There are a variety of (good) reasons for this. (For example, bidder
valuation may not be independent. This leads, e.g., to Winner’s curse.
Thus information about other people’s valuation matters a lot.)

Instead, often an Ascending price (English) auction is used:

The price starts at a low reserve price, and is repeatedly incremented
by a small amount, ε > 0, until all but one of the bidders drops out
saying “I don’t want it at that high a price”.
At that point, the one remaining bidder gets the item, at the last price.

It is intuitively clear that if we model these auctions as (Bayesian)
games with private valuations then the outcome of the English auction
should be “essentially the same” as that of the Vickrey auction.

Things change a lot if we model them with interdependent valuations.
(A model we haven’t discussed: players don’t know exactly their own
valuation. Their valuation depends on everybody’s private signal.).
That is one reason why an English auction is often preferred.
(Because it diminishes phenomena like winner’s curse.)Kousha Etessami () Lecture 18 14 / 18



Why not use VCG for multi-item auctions?

Suppose there is a set J of items, with |J| = k > 1, up for auction.

Suppose each bidder i is “single-minded” and values only one subset
Ji ⊆ J of the items, so he has a valuation vi (J ′) = v∗i > 0 for any
J ′ ⊇ Ji , and vi (J ′) = 0 for all J ′ 6⊇ Jj . (So, we can specify valuation
vi by just giving (v∗i , Ji ).)

Note: if Ji ∩ Ji ′ 6= ∅, then auction can’t satisfy both bidders i and i ′.

Suppose, we want the auction outcome to maximize total value for all
bidders.

Why not use the VCG mechanism?

A problem: for VCG we have to compute an outcome, c∗, that
maximizes the total value

∑
i vi (c∗).

This is NP-hard in general, even when we always have v∗i = 1:
easily encodes maximum independent set.
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Proof of NP-hardness

Here is the simple reduction from the maximum independent set problem:

Let G = (V ,E ) be any graph, with V = {s1, . . . , sn}.

We associate with each edge e ∈ E an item in the auction.

We associate a player (bidder), i , with every vertex si ∈ V .

We let Ji be the set of edges adjacent to vertex vi .

We let v∗i = 1 for all i (i.e., every player has value 1 for its desired set).

Then finding an outcome c∗ of the auction (i.e., a collection of disjoint
sets Ji , indicating those bidders who get their desired set) such that this
outcome maximizes

∑
i vi (c∗) is equivalent to finding a maximum

independent set in the graph G .
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Algorithmic Mechanism Design

So, achieving incentive compatibility by means of VCG may involve
solving NP-hard problems.

Why not try the standard approximation approach used for coping
with NP-hardness?
Problem: if the mechanism outputs only an approximate solution, and
yet tries to compute VCG-like prices for it, then incentive compability
totally breaks down.

In some auction settings (like single-minded bidders), it is possible to
design non-VCG mechanisms which are: (1) incentive compatible, (2)
where prices and allocations are polynomial-time computable, and (3)
such that the outcome yields a total valuation within the best
possible approximation ratio of optimal (any better approximation
ratio would be NP-hard).

These are the kinds of problems addressed by
Algorithmic Mechanism Design.
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next time

There are other multi-item auction settings where the (exact) VCG
mechanism remains useful and can be efficiently computed.

One important and beautiful example of this is Matching markets
(multi-item unit-demand auctions).

The setting of matching markets also gets us much closer to the
setting of sponsored search auctions (also known as position
auctions). These can be viewed as special subcases of matching
markets and unit-demand auctions.

We will discuss these next time.

We will then end our lectures by presenting a general formal
framework for Mechanism Design.
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