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warning, again

• The subjects we will briefly glimpse at today are
part of a fast emerging field at the intersection
of game theory, CS, economics and e-commerce,
and “internetology”.

Numerous advanced courses are being taught on
these subjects around the world, and there are
conferences and workshops dedicated to them.
See, e.g., the proceedings of the ACM conference
on Electronic Commerce.

See the recent textbook Algorithm Game Theory,
edited by N. Nisan, T. Roughgarden, E. Tardos,
and V. Vazirani, Cambridge Press, 2007. (A
collection of chapters written by different experts).

• We won’t even scratch the surface (of the surface)
of these subjects, so please do explore them further
if they interest you.
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games and the internet

• Basic idea: “The internet is a huge experiment
in interaction between agents (both human and
automated)”.

• Such interactions can profitably be viewed from
a game theoretic viewpoint: agents trying to
maximize their own payoffs, etc.

• How do we set up the rules of these games to
harness “socially optimal” results?

• These vague notions can best be illustrated by
examples.
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a flow network game

s t

x

1

(from [Roughgarden-Tardos’00])
• A large number n of customers in the network

want to go from s to t.

• Each can either take the edge labeled 1, with
“latency” 1 (delay of crossing edge), or edge
labeled with latency x. Here x represents the
“congestion”, given by the ratio of the number of
customers that are using that edge divided by the
total n.

• Assume n is very large, (basically, n → ∞).

• What is the Nash Equilibrium?
(NEs in such a setting can be shown to be
essentially unique [Beckmann, et. al. ’56].)

• What is a “globally optimal” customer routing
strategy profile that minimizes average delay?
What is the globally optimal average delay?
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a modified game

s t

1

x d

• What is the NE, and what is the average delay it
induces?

• What is the globally optimal average delay?
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a different network

s t
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x
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• What is the NE, and what is its average delay?

• What is a globally optimal strategy profile and
optimal average delay?

• What if an ambitious “network service provider”
wanted to build additional “superfast” lines?
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Braess’s paradox

s t
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0

• What is the NE and its average delay?

• What is the globally optimal average delay?
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social welfare
and the price of anarchy

Recall that in a strategic game Γ, we may have
different measures of the “social welfare” welfare(x)
under a particular profile of (mixed) strategies x ∈ X .
For example, “utilitarian” social welfare is
welfare(x) :=

∑n

i=1
Ui(x). For a game Γ, let NE(Γ)

be the set of NE’s of Γ.
For our next definition suppose welfare(x) > 0 for all
x ∈ X . (In many games we could enforce this by,
e.g., “shifting” all payoffs by an additive factor.)

A version of “the price of anarchy” can be defined as:
([Koutsoupias-Papadimitriou’98,Papadimitriou’01])

PA(Γ) :=
maxx∈X welfare(x)

min
x∈NE(Γ) welfare(x)

Thus, the “price of anarchy” is the ratio of best
“global” outcome to the the worst NE outcome.
Note: this ratio is ≥ 1 and larger means “worse”.
(Perhaps “price” is not the best word for this variant.)

It would be comforting to establish that in various
situations the “price of anarchy” isn’t too high.
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price of anarchy in the
flow network game

• For flow f let welfare(f) := 1/(average s-t-delay).

• In Braess’s paradox, the price of anarchy is 4/3: by
playing the NE the average delay is 2, but playing
half-and-half on the upper and lower route, the
average delay is 3/2 (and that’s optimal).

• We have seen that the price of anarchy in network
games can be arbitrarily high, when xd is an edge
label.

• Remarkably, [Roughgarden-Tardos’00] showed
that in a more general flow network setting (where
there can be multiple source-destination pairs
(sj, tj)), as long as “congestions” labeling edges
are linear functions of x, the worst-case price of
anarchy is 4/3.

• In other words, for linear latencies, Braess’s
paradox is the worst-case scenario.
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auctions as games

Auctions have been studied game theoretically for a
long time. Consider one such formulation:

• Each of n bidders is a player.

• Each player i has a “valuation” vi ∈ R for the
item being bid on.

• The payoff to player i, if he/she wins the auction
at price pri is

ui(outcome) := vi − pri

• All other players get payoff 0.

• Under the following constraints, the auctioneer is
free to set up the rules of the auction: given bids
(b1, . . . , bn) one of the highest bidders must win,
and at a price ≤ maxi bi.

• Question: What rules should the auctioneer
employ, so that for each player i, revealing the
“true worth” vi is a dominant strategy
(i.e., bi = vi is a dominant strategy)?

Kousha Etessami AGTA: Lecture 16



10

vickery auctions
and mechanism design

• In a Vickery auction, a.k.a., second-price, sealed

bid auction, the highest bidder wins but the price
paid by the highest bidder is the second highest
bid price.

• Convince yourself: bidding your true “valuation”
vi is a dominant strategy in this game.

• This is the starting point of a vast sub-discipline of
game theory called “Mechanism Design”, where
the goal is to design a game where selfish player
will behave in a desired way (e.g., a “socially
optimal” way).

• Many algorithmic issues impinge on mechanism
design. See, e.g., [Nisan-Ronen’99,Nisan’99-00,
. . . ]. See Nisan’s chapters on Mechanism Design
in the AGT book referenced on page 1 of these
notes.
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a formal setting
for mechanism design

Formally, the input to a mechanism design problem
can be specified by giving three things:

• An environment, E , in which the game designer
operates.

• A choice function, f , which describes the
designer’s preferred outcomes in the given
environment.

• A solution concept, Sol, which describes the
kinds of strategy profiles of games (such as
their Nash Equilibria) which will be considered
“solutions” in which the desired choice function
should be implemented.

We describe each of these three inputs separately,
using auctions as a running example to illustrate each
concept.

Once this is done, we will be able to state the
mechanism design problem formally.
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environments

An environment, E = (N, C,Θ,M), consists of:
• A set N = {1, . . . , n} of players.

• A set C of “outcomes”.
auction example: C could be a set of pairs (i, pr),
meaning that player i wins and pays price pr.

• A cartesian product Θ = Θ1×Θ2×. . .×Θn, where
each set Θi is a set of possible “utility functions”
for player i. Each ui ∈ Θi, is a function ui : C 7→
R, that maps outcomes to payoffs for player i.
auction example: ui could be given by

ui((i
′, pr)) =

{

0 if i 6= i′

vi − pr if i = i′

• A set M of “mechanisms”. Each M ∈ M has
form M = (S1, . . . , Sn, g), where Si is a set of
strategies for player i, and g : S1×. . .×Sn 7→ C, is
a function from strategy profiles to “outcomes”.
auction example: the strategy sets Si give the
possible bids for each player, and g gives a function
that maps a profile of bids to an “outcome” of who
wins and at what price. Such outcome functions
can be constrained (using M), e.g., to only allow
top bidders to win, and to ask for at most the
maximum bid price to be paid.
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choice functions

Given an environment E , a choice function

f : Θ 7→ 2C

for the designer, specifies what set of outcomes the
designer would prefer if it knew exactly what utility
(payoff) function each player has.
auction example: the choice function of the
designer could be, e.g., optimize social welfare,
i.e., f((u1, . . . , un)) = {(i, pr) ∈ C | i =
arg maxi vi & pr = maxj 6=i vj}.

Note that a mechanism M = (S1, . . . , Sn, g) ∈ M
together with the tuple u ∈ Θ, gives a complete
description of a strategic game ΓM,u, where the
payoff function for player i can now be described as
a function of strategy profiles: by abuse of notation,
for the game ΓM,u we can write ui(g(s1, . . . , sn)) as
simply ui(s1, . . . , sn).
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solution concepts

We lastly need the notion of a “solution concept”
which specifies what kind of solutions of a game we
are trying to implement the choice function in. Such
solutions might be Nash Equilibria, or more strong
conditions such as profiles of dominant strategies.

Given an environment E , a solution concept is given
by a mapping Sol, whose domain is M × Θ, and
such that for each mechanism M = (S1, . . . , Sn, g)
and each tuple u = (u1, . . . , un) of utility functions,
Sol((S1, . . . , Sn, g), u) ∈ 2S, where S = S1×. . .×Sn.
auction example: in the auction example we may wish
to implement the choice in dominant strategies. In
this setting, we ask that Sol(M, u) be the set of
strategy combinations (s1, . . . , sn) such that each si

is a dominant strategy for player i in ΓM,u.
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finally: the mechanism design
problem statement

The mechanism design problem can now be stated:

Given environment E = (N, C, Θ,M), a choice
function f , and a solution concept Sol, find
M = (S1, . . . , Sn, g) ∈ M such that for all
tuples u ∈ Θ of utility functions, Sol(M, u)
is a non-empty set and for all s ∈ Sol(M, u),
g(s) ∈ f(u).

If such a mechanism M exists, we say M Sol-
implements choice function f in environment E .
We then also say f is Sol-implementable in E .

This was a rather long-winded definition. There
is room to argue whether some of this
formalization adequately captures “real life”
situations of mechanism design. Nevertheless, these
formalizations have proved useful to auction design
and the mechanism design community. See books
[Mas-Colell-Whinston-Green’95,Osborne-Rubinstein’94].

A fact which may seem surprising, particularly
if one knows Arrow’s and Gibbard-Satterthwaite’s

Theorems, is the “revelation principle”.
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a little social choice theory

Before discussing the revelation principle, we discuss
some classic social choice theory to motivate it.

Let C be a set of outcomes, and let L be the set of
linear orderings on C.

A social choice function is a function f : Ln 7→ C.
(Thus f aggregates the ordering on C of n individuals
into a choice of some “preferred” outcome from C.)

A social choice function f can be strategically

manipulated by player (voter) i, if for some ≺1

, . . . ,≺n∈ L, we have a ≺i a′, and a = f(≺1

, . . . ,≺n), and there exists some other ordering ≺′
i

such that a′ = f(≺1, . . . ,≺
′
i, . . . ,≺n).

f is called incentive compatible if it can not be
strategically manipulated by anybody.

f is a dictatorship if there is some player i such that
for all ≺1, . . . ,≺n, f(≺1, . . . ,≺n) = a where a is the
maximum outcome for player i, i.e., ∀b 6= q, b ≺i a.

Theorem (Gibbard-Satterthwaite) If |C| ≥ 3, and
f : Ln 7→ C is an incentive compatible social choice
function for which all outcomes in C are possible (i.e.,
the function f is onto C), then f is a dictatorship.
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We remark that a closely related Theorem is the
famous:

Arrow’s Impossibility Theorem: There is no “really
good” way to aggregate people’s preference orders
(over more than 2 alternatives) into a societal
preference order. “Really good” here means it should
satisfy the following three desired criteria:

Unanimity: if everybody has the same preference
order, then that should become the societal
preference order.

Non-dictatorship: no individual’s preferences should
dictate the societies preferences.

Independence of irrelevant alternatives: The societal
preference between any pair of outcomes a and b
should depend only on the preference between a and
b of all individuals, and not on their preferences for
other alternatives c 6= a, b.

Kousha Etessami AGTA: Lecture 16



18

the revelation principle

Define Dom to be the solution concept where
s = (s1, . . . , sn) ∈ S is in Dom(M,u) if and
only if for every player i, si is a dominant
strategy in ΓM,u. Such a profile s is called a
dominant strategy equilibrium (DSE) of ΓM,u.
In environment E = (N, C,Θ,M), a mechanism
M is called a direct revelation mechanism if
M = (Θ1, . . . , Θn, g). In other words, players’
strategies amount to “announcing” their utility.
Players can in general “lie”, but.....

Proposition (Revelation Principle) Suppose f
is Dom-implemented by M = (S1, ..., Sn, g) in
E = (N, C, Θ,M). Then in environment
(N, C,Θ,M′), where M′ consists of all direct
revelation mechanisms, there is some M ′ =
(Θ1, . . . ,Θn, g′) ∈ M′ such that for all u ∈ Θ,
u ∈ Dom(M ′, u) and there is some s ∈ Dom(M,u),
such that g′(u) = g(s) ∈ f(u).
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Thus, each player revealing their true utility function
is a DSE in ΓM ′,u. We then say M ′ truthfully

Dom-implements f . Intuitively, RP says if f can be
Dom-implemented by M then there is a “equivalent”
revelation mechanism M ′ where players “might as
well” reveal their true utility.

Note the contrast to the Gibbard-Satterthwaite
Theorem, which says that there is no non-dictatorial
social choice function for player’s preferences among
3 or more alternatives for which “truth revealing” is
always optimal.

The difference is that in the setting of the revelation
principle, the players do not have a preference order
over all alternatives, but a utility function which
describes their payoff under each given alternative.
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combinatorial auctions

As mentioned, many algorithmic issues impinge on
mechanism design. We unfortunately haven’t time
to get into these. See the AGT book and, e.g.,
[Nisan-Ronen’99,Nisan’99-00]. The next thing we
will look at is:

• Consider an auction where instead of one item, a
set of k items, K, is up for auction at the same
time and each bidder i may only want to bid on
some subset Di ⊆ K, for a price bi.

Question: Given bids (D1, b1), (D2, b2), . . . , (Dn, bn)
what is the most profitable allocation for the
auctioneer?

Obviously NP-hard. (Max Clique even when all
bids bi are the same.)

• If bidders have more complicated criteria for which
subsets they want to bid on, how should they
express this? I.e., with what “bidding language”?

• Again, there is a large literature on combinatorial
auctions and its connections to mechanism design.
See, e.g., [Nisan’00,Parkes’00, . . . ].
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THE END

(hope you enjoyed the course)
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