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warning, again

• In the few remaining lectures, we will briefly look
at several vast subjects at the forefront of AGT
research, at the intersection of CS, economics and
e-commerce, and “internetology”.

• These are extremely active research topics, and
and there are entire conferences and workshops
dedicated to them. See, e.g., the ACM conference
on Electronic Commerce.

• Supplementary reference reading: relevant
chapters of the textbook Algorithm Game Theory,
edited by N. Nisan, T. Roughgarden, E. Tardos,
and V. Vazirani, Cambridge Press, 2007.

For today’s lecture, Chapter 18 (Roughgarden)
and Chapter 19 (Tardos and Wexler), are relevant.

• We will only scratch the surface of these subjects,
so please explore them further if they interest you.
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games and the internet

• Basic idea: “The internet is a huge experiment
in interaction between agents (both human and
automated)”.

• Such interactions can profitably be viewed from
a game theoretic viewpoint: agents trying to
maximize their own payoffs, etc.

• What are the implications of selfish behavior?

• How do we set up the rules of these games to
harness “socially optimal” results?
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(Selfish) Network Routing
as a Game
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Figure 1: “The Internet”

• Selfish agent i = 1, 2, 3, wants to route packets
from source Si to destination T i. So, agent i
must choose a directed path from Si to T i.

• The delay on each edge of the path is governed
by the congestion of that edge, i.e., by the total
number of agents using that edge in their path.

• Agents may want to change their choice if their
path is too congested.

• What is a Nash Equilibrium in this game?

• What are the welfare properties of such NE?
(Is it socially optimal? If not, how bad can it be?)
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Congestion Games
([Rosenthal,1973])

A Congestion Game, G = (N ,R, (Zi)i∈N , (dr)r∈R) has:

• A finite set N = {1, . . . , n} of players.
• A finite set of R = {1, . . . , m} of resources.
• For each player, i, a set Zi ⊆ 2R, of admissible

strategies for player i. So a pure strategy, si ∈ Zi

is simply a set of resources.
• Each resource r ∈ R has a cost function:

dr : N → Z

Intuitively, dr(j) is the cost of using resource r if
there are j agents simultaneously using r.

• For a pure strategy profile s = (s1, . . . , sn) ∈
Z1 × . . . Zn, the congestion on resource r is:

nr(s)
.
= |{i | r ∈ si}|

• Under strategy profile s = (s1, . . . , sn), the total
cost to player i is:

Ci(s)
.
=

∑

r∈si

dr(nr(s))

• Every player, i, of course want to minimize its
own (expected) cost.
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Best response dynamics,
and pure Nash Equilibria

In a congestion game G, for any pure strategy profile
s = (s1, . . . , sn), suppose that some player i has
a better alternative strategy, s′i ∈ Zi, such that
Ci(s−i; s

′
i) < Ci(s).

Player i can switch (unilaterally) from si to s′i. This
takes us from profile s to profile (s−i, s

′
i).

We call this a single (strict) improvement step.

Starting at an arbitrary pure strategy profile s, what
happens if the players perform a sequence of such
improvement steps?

Theorem: ([Rosenthal’73]) In any congestion game,
every sequence of strict improvement steps is
necessarily finite, and terminates in a pure Nash
Equilibrium.

Thus, in particular, every congestion game has a pure
strategy Nash Equilibrium.
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Proof: Potential functions
Proof: Consider the following potential function:

ϕ(s)
.
=

∑

r∈R

nr(s)∑

i=1

dr(i) (1)

What happens to the value of ϕ(s) if player i switches
unilaterally from si to s′i, taking us from profile s to
profile s′ := (s−i; s

′
i)?

Claim: ϕ(s) − ϕ(s′) = Ci(s) − Ci(s
′).

Proof: Re-order the players in any arbitrary way, and
index them as players 1, 2, . . . , n. (In particular, a
player formerly indexed i could be re-indexed as n.)

Then, for i′ ∈ {1, . . . , n}, define

n(i′)
r (s) = |{i | r ∈ Si ∧ i ∈ {1, . . . , i′}}|

By exchanging the order of summation in equation
(1) for ϕ(s), it can be shown that:

ϕ(s) =
n∑

i=1

∑

r∈si

dr(n
(i)
r (s))
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Now note that n
(n)
r (s) = nr(s). Thus

∑

r∈sn

dr(n
(n)
r (s)) =

∑

r∈sn

dr(nr(s)) = Cn(s)

So, if player n switches from strategy sn to s′n,
leading us from profile s to s′ = (s−n; s′n), then:

ϕ(s) − ϕ(s′) = Cn(s) − Cn(s′).

But note that when re-ordering we could have chosen
player n to be any player we want! So this holds for
every player i. 2

To complete the proof of the Theorem:
Observe that every strict improvement step must
decreases the value of the potential function ϕ(s) by
at least 1 (the costs dr(s) are all integers).

Furthermore, there are only finitely many pure
strategies s, so there are finite integers:
a = mins ϕ(s) and b = maxs ϕ(s).

Thus, every improvement sequence is finite.

Finally, note that the last profile s in any
improvement sequence which can not be further
improved is, by definition, a pure Nash equilibrium.2
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The complexity of finding a pure
NE in network congestion games
Consider a network congestion game where we are
given a network with source-sink node pairs (Si, Ti),
for each player i, and each player must to choose a
route (path) from Si to Ti.

Suppose the cost (delay) of an edge, e, under profile
s, is defined to be some linear function:

de(ne(s)) = αene(s) + βe

One obvious way to compute a pure NE is to perform
an arbitrary improvement sequence. However, this
may conceivably require many improvement steps.

Is there a better algorithm?

It turns out that it is as hard as any polynomial
local search problem to compute a pure NE for
network congestion games:

Theorem: [Fabrikant et.al.’04, Ackermann et.al.’06].
Computing a pure NE for a network congestion game is

PLS-complete,
even when all edge delay functions, de, are linear.

So, unfortunately, a P-time algorithm is unlikely.
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A flow network game

s t

x

1

(from [Roughgarden-Tardos’00])
• A large number n of customers in the network

want to go from s to t.

• Each can either take the edge labeled 1, with
“latency” 1 (delay of crossing edge), or edge
labeled with latency x. Here x represents the
“congestion”, given by the ratio of the number of
customers that are using that edge divided by the
total n.

• Assume n is very large, (basically, n → ∞).

• What is the delay in Nash Equilibrium?
(NEs in such a setting yield an essentially unique
average delay [Beckmann, et. al. ’56].)

• What is a “globally optimal” customer routing
strategy profile that minimizes average delay?
What is the globally optimal average delay?
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a modified game

s t

1

x d

• What is the NE, and what is the average delay it
induces?

• What is the globally optimal average delay?
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a different network

s t

1

1x

x

a

b

• What is the NE, and what is its average delay?

• What is a globally optimal strategy profile and
optimal average delay?

• What if an ambitious “network service provider”
wanted to build additional “superfast” lines?
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Braess’s paradox

s t

1

1x

x

a

b

0

• What is the NE and its average delay?

• What is the globally optimal average delay?
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social welfare
and the price of anarchy

Recall that in a strategic game Γ, we may have
different measures of the “social welfare” welfare(x)
under a particular profile of (mixed) strategies x ∈ X .
For example, “utilitarian” social welfare is
welfare(x) :=

∑n

i=1 Ui(x). For a game Γ, let NE(Γ)
be the set of NE’s of Γ.
For our next definition suppose welfare(x) > 0 for all
x ∈ X . (In many games we could enforce this by,
e.g., “shifting” all payoffs by an additive factor.)

A version of “the price of anarchy” can be defined
as: ([Koutsoupias-Papadimitriou’98])

PA(Γ) :=
maxx∈X welfare(x)

min
x∈NE(Γ) welfare(x)

Thus, the “price of anarchy” is the ratio of best
“global” outcome to the the worst NE outcome.
Note: this ratio is ≥ 1 and larger means “worse”.

It would be comforting to establish that in various
situations the “price of anarchy” isn’t too high.
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price of anarchy in the
flow network game

• For flow f let welfare(f) := 1/(average s-t-delay).

• In Braess’s paradox, the price of anarchy is 4/3: by
playing the NE the average delay is 2, but playing
half-and-half on the upper and lower route, the
average delay is 3/2 (and that’s optimal).

• We have seen that the price of anarchy in network
games can be arbitrarily high, when xd is an edge
label.

• Remarkably, [Roughgarden-Tardos’00] showed
that in a more general flow network setting (where
there can be multiple source-destination pairs
(sj, tj)), as long as “congestions” labeling edges
are linear functions of x, the worst-case price of
anarchy is 4/3.

• In other words, for linear latencies, the Braess’s
paradox example yields the worst-case scenario.
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Back to atomic network
congestion games

What is the price of anarchy in atomic network
congestion games?

Theorem: [Christodoulou-Koutsoupias’2005]. The
price of anarchy for an NE in network congestion
games with linear utilities is

5/2

(And this is tight, just like 4/3 for non-atomic
network congestion games.)
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