
Algorithmic Game Theory

and Applications

Lecture 15:

a brief taster of

Markov Decision Processes

and Stochastic Games

Kousha Etessami

warning

� The subjects we will touch on today are vast: one can easily
spend an entire course on them alone.

� So, what we discuss today is only a brief “taster”. Please
do explore further if the subject interests you.

� Here are two standard textbooks that you can look up if
you are interested in learning more:

I M. Puterman, Markov Decision Processes, Wiley, 1994.

I J. Filar and K. Vrieze, Competitive Markov Decision
Processes, Springer, 1997. (For 2-player zero-sum
stochastic games.)

Games against Nature

Consider a game graph, where some nodes belong to player 1
but others are chance nodes of “Nature”:

Start

Player I: Nature:

3

1

−2

1/3

1/3
1/6

2/3

1/6

1/3

Question: What is Player 1’s “optimal strategy” and
“optimal expected payoff” in this game?

a simple finite game: “make a big number”

k−1 0k−2

� Your goal: create as large a k-digit number as possible,
using digits from D = {0, 1, 2, . . . , 9}, which “nature/chance”
will give you, one by one.

� The game proceeds in k rounds.

� In each round, “nature” chooses d ∈ D “uniformly at
random”, i.e., each digit has probability 1/10.

� You then choose which “unfilled” position in the k-digit
number should be “filled” with digit d . (Initially, all k
positions are “unfilled”.)

� The game ends when all k positions are “filled”.

Your goal: maximize final number’s expected value.
Question: What should your strategy be?

� This is a “finite horizon” “Markov Decision Process”.

� Note that this is a finite PI-game and, in principle, we can
solve it using the “bottom-up” algorithm.

� But we wouldn’t want to look at the entire tree if we can
avoid it!

vast applications
Beginning in the 1950’s with the work of Bellman, Wald, and
others, these kinds of “Games Against Nature”, a.k.a.,
“Markov Decision Processes”, a.k.a. “Stochastic Dynamic
Programs”, have been applied to a huge range of subjects.
Examples where MDPs have actually been applied:
I highway repair scheduling.
I bus engine replacement scheduling.
I waste management.
I call center scheduling.
I . . .

(See [Puterman’94,Ross’83,Derman’72,Howard’70,Bellman’57,..])

� “Reinforcement Learning” (RL), see e.g., [Sutton-Barto’98],
is founded on the underlying model of MDPs.
� However, in RL, the MDP itself is often not fully visible,
and one has to “discover” it by a process of
exploration/exploitation.

I The richness of applications shouldn’t surprise you.

I We live in an uncertain world, where we constantly have
to make decisions in the face of uncertainty about future
events.

I But we may have some information, or “belief”, about
the “likelihood” of future events.

I “I know I may get hit by a car if I walk out of my
apartment in the morning.” But somehow I still muster
the courage to get out.

I I don’t however walk into a random pub in Glasgow and
yell “I LOVE CELTIC FOOTBALL CLUB”, because I
know my chances of survival are far lower.

Markov Decision Processes
Definition A Markov Decision Process is given by a game
graph Gv0 = (V ,E , pl, q, v0, u), where:

I V is a (finite) set of vertices.

I pl : V 7→ {0, 1}, maps each vertex either to player 0
(“Nature”) or to player 1.

I Let V0 = pl−1(0) , and V1 = pl−1(1).

I E : V 7→ 2V maps each vertex v to a set E(v) of
“successors” (or “actions” at v).

I For each “nature” vertex, v ∈ V0, a probability
distribution qv : E (v) 7→ [0, 1], over the set of “actions”
at v , such that

∑
v ′∈E(v) qv (v ′) = 1.

I A start vertex v0 ∈ V .

I A payoff function:
u : ΨTv0

7→ R, from plays to payoffs for player 1.

Player 1 want to maximize its expected payoff.

Many different payoff functions
Many different payoff functions have been studied in the MDP
and stochastic game literature. Examples:
1. Mean payoff: for every state v ∈ V , associate a payoff
u(v) ∈ R to that state. For a play π = v0v1v2v3 . . ., the goal
is to maximize the expected mean payoff:

E(lim inf
n→∞

∑n−1
i=0 u(vi)

n
)

2. Discounted total payoff: For a given discount factor
0 < β < 1, the goal is to maximize:

E(lim
n→∞

n∑
i=0

β iu(vi))

3. Probability of reaching target: Given target vT ∈ V ,
goal: maximize (or minimize) probability of reaching vT . Can
be rephrased: for a play π = v0v1v2 . . ., let χ(π) := 1 if
vi = vT for some i ≥ 0. Otherwise, χ(π) := 0. Goal:
maximize/minimize E(χ(π)) .

Many different payoff functions
Many different payoff functions have been studied in the MDP
and stochastic game literature. Examples:
1. Mean payoff: for every state v ∈ V , associate a payoff
u(v) ∈ R to that state. For a play π = v0v1v2v3 . . ., the goal
is to maximize the expected mean payoff:

E(lim inf
n→∞

∑n−1
i=0 u(vi)

n
)

2. Discounted total payoff: For a given discount factor
0 < β < 1, the goal is to maximize:

E(lim
n→∞

n∑
i=0

β iu(vi))

3. Probability of reaching target: Given target vT ∈ V ,
goal: maximize (or minimize) probability of reaching vT . Can
be rephrased: for a play π = v0v1v2 . . ., let χ(π) := 1 if
vi = vT for some i ≥ 0. Otherwise, χ(π) := 0. Goal:
maximize/minimize E(χ(π)) .

Many different payoff functions
Many different payoff functions have been studied in the MDP
and stochastic game literature. Examples:
1. Mean payoff: for every state v ∈ V , associate a payoff
u(v) ∈ R to that state. For a play π = v0v1v2v3 . . ., the goal
is to maximize the expected mean payoff:

E(lim inf
n→∞

∑n−1
i=0 u(vi)

n
)

2. Discounted total payoff: For a given discount factor
0 < β < 1, the goal is to maximize:

E(lim
n→∞

n∑
i=0

β iu(vi))

3. Probability of reaching target: Given target vT ∈ V ,
goal: maximize (or minimize) probability of reaching vT . Can
be rephrased: for a play π = v0v1v2 . . ., let χ(π) := 1 if
vi = vT for some i ≥ 0. Otherwise, χ(π) := 0. Goal:
maximize/minimize E(χ(π)) .

Expected payoffs

� Intuitively, we want to define expected payoffs as the sum of
payoffs of each play times its probability.
� However, of course, this is not possible in general because
after fixing a strategy it may be the case that all plays are
infinite, and every infinite play has probability 0!
� In general, to define the expected payoff for a fixed strategy
requires a proper measure theoretic treatment of the
probability space of infinite plays involved, etc.
� This is the same thing we have to do in the theory of
Markov chains (where there is no player).
� We will avoid all the heavy probability theory.
(You have to take it on faith that the intuitive notions can be
formally defined appropriately, or consult the cited textbooks.)

memoryless optimal strategies

A strategy is again any function that maps each history of
the game (ending in a node controlled by player 1), to an
action (or a probability distribution over actions) at that node.
Theorem (memoryless optimal strategies) For every
finite-state MDP, with any of the the following objectives:
� Mean payoff,
� Discounted total payoff, or
� Probability of reaching target,
player 1 has a pure memoryless optimal strategy.
In other words, player 1 has an optimal strategy where it just
picks one edge from E (v) for each vertex v ∈ V1.
(For a proof see, e.g., [Puterman’94].)

Bellman Optimality Equations
For the objective of maximizing probability to reach target
vertex vT , consider the following system of equations. Let
V = {v1, . . . , vn} be the set of vertices of the MDP, G .
Consider the following system of equations, with one variable
xi for every vertex vi .

xT = 1

xi = max{xj | vj ∈ E (vi)} for vi ∈ V1

xi =
∑

vj∈E(vi)

qvi (vj) · xj for vi ∈ V0

Theorem These max-linear Bellman equations for the
MDP, have a (unique) least non-negative solution vector
x∗ = (x∗1 , . . . , x

∗
n) ∈ [0, 1]n, in which x∗i is the optimal

probability for player 1 to reach the target vT in the MDP Gvi

starting at vi . We won’t prove this (but it is not difficult).

computing optimal values

One way to compute the solution x∗ for the Bellman equations
x = L(x) is value iteration: consider the sequence L(0),
L(L(0)), . . ., Lm(0). Fact: limm→∞ Lm(0) = x∗.
Unfortunately, value iteration can be very slow in the worst
case (requiring exponentially many iterations). Instead, we can
use LP. Let V = {v1, . . . , vn} be the vertices of MDP, G . We
have one LP variable xi for each vertex vi ∈ V .

Minimize
∑n

i=1 xi
Subject to:
xT = 1;
xi ≥ xj , for each vi ∈ V1, and vj ∈ E (vi);
xi =

∑
vj∈E(vi)

qvi (vj) · xj , for each vi ∈ V0;
xi ≥ 0 for i = 1, . . . , n.

Theorem For (x∗1 , . . . , x
∗
n) ∈ Rn an optimal solution to this

LP (which must exist), each x∗i is the optimal value for player
1 in the game Gvi . (This follows from Bellman equations.)

extracting the optimal strategy

Suppose you computed the optimal values x∗ for each vertex.
How do you find an optimal (memoryless) strategy?
One way to find an optimal strategy for player 1 in this MDPs
is to solve the dual LP.
First, remove all vertices vi such that the maximum probability
of reaching the target from vT is 0. This is easy to do, by just
doing reachability analysis on the underlying graph of the
MDP, and ignoring probabilities.
Once this is done, it turns out that an optimal solution to the
dual LP encodes an optimal strategy of player 1 in the MDP
associated with the primal LP. And, furthermore, if you use
Simplex, the optimal basic feasible solution to the dual will
yield a pure strategy. (Too bad we don’t have time to prove
this.)

Stochastic Games

What if we introduce a second player in the game against
nature?
In 1953 L. Shapley, one of the major figures in game theory,
introduced “stochastic games”, a general class of zero-sum,
not-necessarily perfect info, two-player games which generalize
MDPs. This was about the same time that Bellman and
others were studying MDPs.
In Shapley’s stochastic games, at each state, both players
simultaneously and independently choose an action. Their
joint actions yield both a 1-step reward, and a probability
distribution on the next state.
We will confine ourselves to a restricted perfect information
stochastic games where the objective is the probability of
reaching a target.
These are callled “simple stochastic games” by [Condon’92].

simple stochastic games

Definition A zero-sum simple stochastic game is given by
a game graph Gv0 = (V ,E , pl, q, v0, u), where:
� V is a (finite) set of vertices.
� pl : V 7→ {0, 1, 2}, maps each vertex to one of player 0
(“Nature”), player 1, or player 2.
� Let V0 = pl−1(0), V1 = pl−1(1), & V2 = pl−1(2).
� E : V 7→ 2V maps each vertex v to a set E(v) of
“successors” (or “actions” at v).
� Let Vdead = {v ∈ V | E (v) = ∅}.
� For each “nature” vertex, v ∈ V0, a probability distribution
qv : E (v) 7→ [0, 1], over the set of “actions” at v , such that∑

v ′∈E(v) qv (v ′) = 1.
� A start vertex v0 ∈ V .
� A target vertex vT ∈ V .

memoryless determinacy

� The goal of player 1 is to maximize the probability of hitting
the target state vT .
� The goal of of player 2 is to minimize this probability. (So,
the game is a zero-sum 2-player game.)
� We call the game memorylessly determined if both players
have (deterministic) memoryless optimal strategies.

Theorem([Condon’92]) Every simple stochastic game is
memorylessly determined.

computing optimal strategies
� Memoryless determinacy immediately gives us one algorithm
for computing optimal strategies:

I “Guess” the strategy for one of the two players.

I The “residual game” is a MDP; solve corresponding LP.

� This gives a NP ∩ co-NP procedure for solving simple
stochastic games.
� [Hoffman-Karp’66] studied a “strategy improvement
algorithm” for stochastic games based on LP, which can be
adapted to simple stochastic games ([Condon’92]).
Strategy improvement works well in practice, but recent results
show that this algorithm requires exponential time for both
MDPs and stochastic games, with SOME objective functions.
� Is there a P-time algorithm for solving simple stochastic
games? This is an open problem.
� Solving parity games and mean payoff games (Lecture 13)
can be reduced to solving SSGs ([Zwick-Paterson’96]).

food for thought

What is the relationship between computing Nash
Equilibria in finite (two-person, n-person) strategic
games and computing solutions to (simple) stochastic
games?

In other words:
What does Nash have to do with Shapley?

To put it more concretely: is either computational problem
efficiently reducible to the other?
ANSWER: it turns out that both computing the value of
Simple Stochatic Games, and approximating the (irrational)
value of Shapley’s Stochastic Games are reducible to
computing a NE in 2-player strategic games. In other words,
both problems are in PPAD.
(See [Etessami-Yannakakis,’07,SICOMP’10]).

