Algorithmic Game Theory and Applications

Lecture 15: a brief taster of Markov Decision Processes and Stochastic Games

Kousha Etessami
warning

• The subjects we will touch on today are so interesting and vast that one could easily spend an entire course on them alone.

• So, think of what we discuss today as only a brief “taster”, and please do explore it further if it interests you.

• Here are two standard textbooks that you can look up if you are interested in learning more:
Games against Nature

Consider a game graph, where some nodes belong to player 1 but others are chance nodes of “Nature”:

Question: What is Player 1’s “optimal strategy” and “optimal expected payoff” in this game?
a simple finite game: “make a big number”

- Your goal is to create as large a k-digit number as possible, using digits from $D = \{0, 1, 2, \ldots, 9\}$, which “nature” will give you, one by one.
- The game proceeds in k rounds.
- In each round, “nature” chooses $d \in D$ “uniformly at random”, i.e., each digit has probability 1/10.
- You then choose which “unfilled” position in the k-digit number should be “filled” with digit d. (Initially, all k positions are “unfilled”.)
- The game ends when all k positions are “filled”.

Your goal: maximize final number’s expected value.

Question: What should your strategy be?

This is a “finite horizon” “Markov Decision Process”. (example taken from [Puterman’94].)

Note that this is a finite PI-game and, *in principle*, we can solve it using the “bottom-up” algorithm. But we wouldn’t want to look at the entire tree if we can avoid it!
vast applications

Beginning in the 1950’s with the work of Bellman, Wald, and others, these kinds of “Games Against Nature”, a.k.a., “Markov Decision Processes”, a.k.a. “Stochastic Dynamic Programs”, have been applied to a huge range of subjects.

Examples where MDPs have actually been applied:

- highway repair scheduling.
- inventory management.
- bus engine replacement.
- packet routing in telephone networks.
- waste management.
- call center scheduling
- mating and mate desertion in hawks (don’t ask).
- hunting behavior of lions (don’t ask).
- egg laying patterns of “apple magots” (don’t ask).
- medical diagnosis and prediction (don’t ask).
- (don’t ask).

(See [Puterman’94, Ross’83, Derman’72, Howard’70, Bellman’57,..])
The richness of applications shouldn’t surprise you.

We live in an uncertain world, where we constantly have to make decisions in the face of uncertainty about future events.

But we may have some information, or “belief”, about the “likelihood” of future events.

“I know I may get hit by a car if I walk out of my apartment in the morning.” But somehow I still muster the courage to get out.

I don’t however walk into a random pub in Glasgow and yell “I LOVE CELTIC FOOTBALL CLUB”, because I know my chances of survival are far lower.
Markov Decision Processes

Definition A Markov Decision Process is given by a game graph $G_{v_0} = (V, E, pl, q, v_0, u)$, where:

- V is a (finite) set of vertices.
- $pl : V \mapsto \{0, 1\}$, maps each vertex either to player 0 ("Nature") or to player 1.
- Let $V_0 = pl^{-1}(0)$, and $V_1 = pl^{-1}(1)$.
- $E : V \mapsto 2^V$ maps each vertex v to a set $E(v)$ of "successors" (or "actions" at v).
- For each "nature" vertex, $v \in V_0$, a probability distribution $q_v : E(v) \mapsto [0, 1]$, over the set of "actions" at v, such that $\sum_{v' \in E(v)} q_v(v') = 1$.
- A start vertex $v_0 \in V$.
- A payoff function:
 $u : \Psi_{T_{v_0}} \mapsto \mathbb{R}$, from plays to payoffs for player 1.

Player 1 want to maximize its expected payoff.
Many different payoff functions

Many different payoff functions have been studied in the MDP and stochastic game literature. Examples:

1. **Mean payoff**: for every state $v \in V$, associate a payoff $u(v) \in \mathbb{R}$ to that state. For a play $\pi = v_0v_1v_2v_3 \ldots$, the goal is to maximize the expected mean payoff:

\[
\mathbb{E}(\liminf_{n \to \infty} \frac{\sum_{i=0}^{n-1} u(v_i)}{n})
\]

2. **Discounted total payoff**: For a given discount factor $0 < \beta < 1$, the goal is to maximize:

\[
\mathbb{E}(\lim_{n \to \infty} \sum_{i=0}^{n} \beta^i u(v_i))
\]

3. **Probability of reaching target**: Given a target state $v_T \in V$, the goal is to maximize (or minimize) the probability of reaching v_T. This can be rephrased as follows: for a play $\pi = v_0v_1v_2 \ldots$, let $\chi(\pi) := 1$ if $v_i = v_T$ for some $i \geq 0$. Otherwise, let $\chi(\pi) := 0$. Then the goal is to maximize/minimize:

\[
\mathbb{E}(\chi(\pi))
\]
Expected payoffs

• Intuitively, we want to define expected payoffs as the sum of payoffs of each play times its probability.
• However, of course, this is not possible in general because after fixing a strategy it may be the case that all plays are infinite, and every infinite play has probability 0!
• In general, to define the expected payoff for a fixed strategy requires a proper measure theoretic treatment of the probability space of infinite plays involved, etc.

• This is the same thing we have to do in the theory of Markov chains (where there is no player).
• We will avoid all the heavy probability theory.
 (You have to take it on faith that the intuitive notions can be formally defined appropriately, or consult the cited textbooks.)
memoryless optimal strategies

A strategy is again any function that maps each history of the game (ending in a node controlled by player 1), to an action (or a probability distribution over actions) at that node.

Theorem (memoryless optimal strategies) For every finite-state MDP, with any of the the following objectives:

1. *Mean payoff*,
2. *Discounted total payoff*, or
3. *Probability of reaching target*,

player 1 has a pure memoryless optimal strategy.

In other words, player 1 has an optimal strategy where it just picks one edge from $E(v)$ for each vertex $v \in V_1$.

(For a proof see, e.g., [Puterman’94].)
Bellman Optimality Equations

For the objective of maximizing probability to reach target vertex v_T, consider the following system of equations. Let $V = \{v_1, \ldots, v_n\}$ be the set of vertices of the MDP, G.

Consider the following system of equations, with one variable x_i for every vertex v_i.

$$
x_T = 1
$$

$$
x_i = \max \{ x_j \mid v_j \in E(v_i) \} \quad \text{for } v_i \in V_1
$$

$$
x_i = \sum_{v_j \in E(v_i)} q_{v_i}(v_j) * x_j \quad \text{for } v_i \in V_0
$$

Theorem These max-linear Bellman equations for the MDP, have a (unique) least non-negative solution vector $x^* = (x^*_1, \ldots, x^*_n) \in [0, 1]^n$, in which x^*_i is the optimal probability for player 1 to reach the target v_T in the MDP G_{v_i} starting at v_i.

We will not prove this theorem (but it is not difficult).
computing optimal values

One way to compute the (least non-negative) solution \(x^* \) for the Bellman equations \(x = L(x) \) is value iteration: consider the sequence \(L(0), L(L(0)), \ldots, L^m(0) \). Fact: \(\lim_{m \to \infty} L^m(0) = x^* \).

Unfortunately, value iteration can be very slow in the worst case (requiring exponentially many iterations).

Instead, we can use LP. Let \(V = \{v_1, \ldots, v_n\} \) be the vertices of MDP, \(G \). We will have one LP variable \(x_i \) for each vertex \(v_i \in V \).

\[
\text{Minimize } \sum_{i=1}^{n} x_i \\
\text{Subject to:}
\]

\[
x_T = 1; \\
x_i \geq x_j, \text{ for each } v_i \in V_1, \text{ and } v_j \in E(v_i); \\
x_i = \sum_{v_j \in E(v_i)} q_{vi}(v_j) \ast x_j, \text{ for each } v_i \in V_0; \\
x_i \geq 0 \text{ for } i = 1, \ldots, n.
\]

\[\text{Theorem} \quad \text{For } (x_1^*, \ldots, x_n^*) \in \mathbb{R}^n \text{ an optimal solution to this LP (which must exist), each } x_i^* \text{ is the optimal value for player 1 in the game } G_{v_i}.\]

This follows easily from the result stated about Bellman equations.
extracting the optimal strategy

Suppose you have computed the optimal values x^* for each vertex.

How do you find an optimal (memoryless) strategy? One way to find an optimal strategy for player 1 in this MDPs is to solve the dual LP.

First, remove all vertices v_i such that the maximum probability of reaching the target from v_T is 0. This is easy to do, by just doing reachability analysis on the underlying graph of the MDP, and ignoring probabilities.

Once this is done, it turns out that an optimal solution to the dual LP encodes an optimal strategy of player 1 in the MDP associated with the primal LP. And, furthermore, if you use Simplex, the optimal basic feasible solution to the dual will yield a pure strategy. Too bad we don’t have time to see this.
Stochastic Games

What if we introduce a second player in the game against nature?

In 1953 L. Shapley, one of the major figures in game theory, introduced “stochastic games”, a general class of zero-sum, not-necessarily perfect info, two-player games which generalize MDPs. This was about the same time that Bellman and others were studying MDPs.

In Shapley’s stochastic games, at each state, both players simultaneously and independently choose an action. Their joint actions yield both a 1-step reward, and a probability distribution on the next state.

We will confine ourselves to a restricted perfect information stochastic games where the objective is the probability of reaching a target.

These are called “simple stochastic games” by [Condon’92]. (Condon restricts to win-lose games, but she points out the generalization to zero-sum.)
simple stochastic games

Definition A zero-sum simple stochastic game is given by a game graph $G_{v_0} = (V, E, pl, q, v_0, u)$, where:

- V is a (finite) set of vertices.
- $pl : V \mapsto \{0, 1, 2\}$, maps each vertex to one of player 0 ("Nature"), player 1, or player 2.
- Let $V_0 = pl^{-1}(0)$, $V_1 = pl^{-1}(1)$, & $V_2 = pl^{-1}(2)$.
- $E : V \mapsto 2^V$ maps each vertex v to a set $E(v)$ of "successors" (or "actions" at v).
- Let $V_{dead} = \{v \in V \mid E(v) = \emptyset\}$.
- For each "nature" vertex, $v \in V_0$, a probability distribution $q_v : E(v) \mapsto [0, 1]$, over the set of "actions" at v, such that $\sum_{v' \in E(v)} q_v(v') = 1$.
- A start vertex $v_0 \in V$.
- A target vertex $v_T \in V$.
memoryless determinacy

- The goal of player 1 is to maximize the probability of hitting the target state v_T.

- The goal of player 2 is to minimize this probability. (So, the game is a zero-sum 2-player game.)

- We call the game memorylessly determined if both players have (deterministic) memoryless optimal strategies.

Theorem ([Condon’92]) Every simple stochastic game is memorylessly determined.
computing optimal strategies

• Memoryless determinacy immediately gives us one algorithm for computing optimal strategies:
 – “Guess” the strategy for one of the two players.
 – The “residual game” is a MDP.
 Solve the corresponding LP.
• This gives a $\text{NP} \cap \text{co-NP}$ procedure for solving simple stochastic games.
• [Hoffman-Karp’66] studied a “strategy improvement algorithm” for stochastic games based on LP, which can be adapted to simple stochastic games ([Condon’92]).

Strategy improvement works well in practice, but recent results show that this algorithm requires exponential time for both MDPs and stochastic games, with SOME objective functions.
• Is there a P-time algorithm for solving simple stochastic games? This is an open problem.

• It turns out that solving parity games and mean payoff games (Lecture 13) can be efficiently reduced to solving simple stochastic games (see, e.g., [Zwick-Paterson’96]).
food for thought

What is the relationship between computing Nash Equilibria in finite (two-person, \(n\)-person) strategic games and computing solutions to (simple) stochastic games?

In other words:

What does Nash have to do with Shapley?

Nash and Shapley were friends in grad school when game theory was being founded, but that’s obviously not what I mean!

To put it more concretely: is either computational problem efficiently reducible to the other?

THIS QUESTION HAS BEEN ANSWERED: we now know that both computing the value of Simple Stochastic Games, and approximating the (irrational) value of Shapley’s Stochastic Games are reducible to computing a NE in 2-player strategic games. (See [Etessami-Yannakakis,’07,SICOMP’10]).