Algorithmic Game Theory and Applications

Lecture 11: Games of Perfect Information

Kousha Etessami

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

finite games of perfect information

A perfect information (PI) game: 1 node per information set. **Theorem**([Kuhn'53]) Every finite *n*-person extensive PI-game, G, has a NE, in fact, a subgame-perfect NE (SPNE), in <u>pure</u> strategies.

I.e., some pure profile, $s^* = (s_1^*, \ldots, s_n^*)$, is a SPNE. To prove this, we use some definitions. For a game \mathcal{G} with game tree T, and for $w \in T$, define the **subtree** $T_w \subseteq T$, by: $T_w = \{ w' \in T \mid w' = ww'' \text{ for } w'' \in \Sigma^* \}.$ Since tree is finite, we can just associate payoffs to the leaves. Thus, the subtee T_{w} , in an obvious way, defines a "subgame", \mathcal{G}_{w} , which is also a PI-game. The **depth** of a node w in T is its length |w| as a string. The depth of tree T is the maximum depth of any node in T. The depth of a game \mathcal{G} is the depth of its game tree.

proof of Kuhn's theorem (backward induction)

Proof We prove by induction on the depth of a subgame \mathcal{G}_w that it has a pure SPNE, $s^w = (s_1^w, \ldots, s_n^w)$. Then $s^* := s^{\epsilon}$. Base case, depth 0: In this case we are at a leaf w. there is nothing to show: each player *i* gets payoff $u_i(w)$, and the strategies in the SPNE s^{*} are "empty" (it doesn't matter which player's node w is, since there are no actions to take.) Inductive step: Suppose depth of \mathcal{G}_w is k + 1. Let $\overline{Act(w)} = \{a'_1, \dots, a'_r\}$ be the set of actions available at the root of \mathcal{G}_w . The subtrees $T_{wa'_i}$, for $j = 1, \ldots, r$, each define a PI-subgame $\mathcal{G}_{wa'_i}$, of depth $\leq k$. Thus, by induction, each game $\mathcal{G}_{wa'_i}$ has a pure strategy SPNE, $s^{wa'_j} = (s_1^{wa'_j}, \ldots, s_n^{wa'_j}).$ To define $s^w = (s_1^w, \ldots, s_n^w)$, there are two cases to consider

two cases

1. $w \in Pl_0$, i.e., the root node, w, of T_w is a chance node (belongs to "nature"). Let the strategy s_i^w for player *i* be just the obvious "union" $\bigcup_{a' \in Act(w)} s_i^{wa'}$, of its pure strategies in each of the subgames. (Explanation of "union" of disjoint strategy functions.) Claim: $s^w = (s_1^w, \ldots, s_n^w)$ is a pure SPNE of \mathcal{G}_w . Suppose not. Then some player *i* could improve its expected payoff by switching to a different pure strategy in one of the subgames. But that violates the inductive hypothesis on that subgame. 2. $w \in Pl_i$, i > 0: the root, w, of T_w belongs to player i. For $a \in Act(w)$, let $h_i^{wa}(s^{wa})$ be the expected payoff to player *i* in the subgame \mathcal{G}_{wa} . Let $a' = \arg \max_{a \in ACt(w)} h_i^{wa}(s^{wa})$. For players $i' \neq i$, define $s_{i'}^w = \bigcup_{a \in ACt(w)} s_{i'}^{wa}$. For *i*, define $s_i^w = (\bigcup_{a \in Act(w)} s_i^{wa}) \cup \{w \mapsto a'\}$. **Claim:** $s^w = (s_1^w, \ldots, s_n^w)$ is a pure SPNE of \mathcal{G}_w . 日本本語を本語を入語を言語

algorithm for computing a SPNE in finite PI-games

The proof yields an EASY "bottom up" algorithm for computing a pure SPNE in a finite PI-game: We inductively "attach" to the root of every subtree T_{w} , a SPNE s^w for the game \mathcal{G}_w , together with the expected payoff vector $h^w := (h_1^w(s^w), \dots, h_n^w(s^w)).$ 1. Initially: Attach to each leaf w the empty profile $s^{w} = (\emptyset, ..., \emptyset), \&$ payoff vector $h^{w} := (u_{1}(w), ..., u_{n}(w)).$ 2. While (\exists unattached node *w* whose children are attached) ▶ if $(w \in Pl_0)$ then $s^w := (s^w_1, \dots, s^w_n)$, where $s^w_i := \bigcup_{a \in Act(w)} s^{wa}_i$; hence h^w is: $h_i^w(s^w) := \sum_{a \in ACt(w)} q_w(a) * h_i^{wa}(s^{wa})$; else if ($w \in PI_i \& i > 0$) then Let $s^{w} := (s_{1}^{w}, \ldots, s_{n}^{w})$, & $h^{w} := h^{wa'}$, where $a' := \operatorname{arg\,max}_{a \in \mathcal{ACt}(w)} h_i^{wa}(s^{wa}),$ $s_{i'}^{w} := \bigcup_{a \in ACt(w)} s_{i'}^{wa}$, for $i' \neq i$, and $s_i^w := \left(\bigcup_{a \in ACt(w)} s_i^{wa}\right) \bigcup \{w \mapsto a'\}_{b, a \in B}$

consequences for zero-sum finite PI-games

Recall that, by the Minimax Theorem, for every finite zero-sum game Γ , there is a <u>value</u> v^* such that for any NE (x_1^*, x_2^*) of Γ , $v^* = U(x_1^*, x_2^*)$, and

$$\max_{x_1 \in X_1} \min_{x_2 \in X_2} U(x_1, x_2) = v^* = \min_{x_2 \in X_2} \max_{x_1 \in X_1} U(x_1, x_2)$$

But it follows from Kuhn's theorem that for extensive PI-games \mathcal{G} there is in fact a pure NE (in fact, SPNE) (s_1^*, s_2^*) such that $v^* = u(s_1^*, s_2^*) := h(\overline{s_1^*}, \overline{s_2^*})$, and thus that in fact

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) = v^* = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

Definition A finite zero-sum game Γ is <u>determined</u>, if

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

It thus follows from Kuhn's theorem that:

Proposition ([Zermelo'1912]) Every finite zero-sum Pl-game, \mathcal{G} , is determined. Moreover, the value & a pure minimax profile can be computed "efficiently" from \mathcal{G} ,

chess

Chess is a <u>finite</u> PI-game (after 50 moves with no piece taken, it ends in a draw). In fact, it's a <u>win-lose-draw</u> PI-game: no chance nodes possible payoffs are 1, -1, and 0.

Proposition([Zermelo'1912]) In Chess, either:

- 1. White has a "winning strategy", or
- 2. Black has a "winning strategy", or
- 3. Both players have strategies to force a draw.
- A "winning strategy", e.g., for White (Player 1) is a pure

strategy s_1^* that guarantees value $u(s_1^*, s_2) = 1$, for all s_2 .

chess

Chess is a <u>finite</u> PI-game (after 50 moves with no piece taken, it ends in a draw). In fact, it's a <u>win-lose-draw</u> PI-game: no chance nodes possible payoffs are 1, -1, and 0.

Proposition([Zermelo'1912]) In Chess, either:

- 1. White has a "winning strategy", or
- 2. Black has a "winning strategy", or
- 3. Both players have strategies to force a draw.

A "**winning strategy**", e.g., for White (Player 1) is a pure strategy s_1^* that guarantees value $u(s_1^*, s_2) = 1$, for all s_2 . **Question:** Which one is the right answer??

chess

Chess is a <u>finite</u> PI-game (after 50 moves with no piece taken, it ends in a draw). In fact, it's a <u>win-lose-draw</u> PI-game: no chance nodes possible payoffs are 1, -1, and 0.

Proposition([Zermelo'1912]) In Chess, either:

- 1. White has a "winning strategy", or
- 2. Black has a "winning strategy", or
- 3. Both players have strategies to force a draw.

A "**winning strategy**", e.g., for White (Player 1) is a pure strategy s_1^* that guarantees value $u(s_1^*, s_2) = 1$, for all s_2 . **Question:** Which one is the right answer?? **Problem:** The tree is far too big!! Even with ~ 200 depth & ~ 5 moves per node: 5^{200} nodes!

Despite having an "efficient" algorithm to compute the value v^* given the tree, we can't even look at the whole tree! We need algorithms that don't look at the whole tree.

50 years of game-tree search

There's > 50 years of research on chess & other game playing programs, (Shannon, Turing, ...). Heuristic game-tree search is now very refined. See any AI text (e.g., [Russel-Norvig]). If we have a function Eval(w) that heuristically "evaluates" a node's "goodness" score, we can use Eval(w) to stop the search at, e.g., desired depth. While searching "top-down", we can "prune out" irrelevant subtrees using α - β -**pruning**. Idea: while searching minmax tree, maintain two values: α -"maximizer can assure score $> \alpha$ "; & β - "minimizer can assure score $< \beta''$:

minmax search with α - β -pruning

Assume, for simplicity, that players alternate moves, root belongs to Player 1 (maximizer), and -1 < Eval(w) < +1. Score -1 (+1) means player 1 definitely loses (wins). Start the search by calling: **MaxVal** $(\epsilon, -1, +1)$; $MaxVal(w, \alpha, \beta)$ If $depth(w) \ge MaxDepth$ then **return** Eval(w). Else, for each $a \in Act(w)$ $\alpha := \max\{\alpha, \mathsf{MinVal}(wa, \alpha, \beta)\};$ if $\alpha > \beta$, then **return** β return α **MinVal** (w, α, β) If $depth(w) \ge MaxDepth$, then **return** Eval(w). Else, for each $a \in Act(w)$ $\beta := \min\{\beta, \mathsf{MaxVal}(wa, \alpha, \beta)\};$ if $\beta < \alpha$, then **return** α return β

boolean circuits as finite PI-games

Boolean circuits can be viewed as a zero-sum PI-game, between AND and OR: OR the maximizer, AND the minimizer: a <u>win-lose</u> PI-game: no chance nodes & only payoffs are 1 and -1.

Let's generalize to infinite zero-sum Pl-games

For a (possibly infinite) zero-sum 2-player Pl-game, we would like to similarly define the game to be "determined" if

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

But, for infinite games max & min may not exist! Instead, we call an (infinite) zero-sum game **<u>determined</u>** if:

$$\sup_{s_1 \in S_1} \inf_{s_2 \in S_2} u(s_1, s_2) = \inf_{s_2 \in S_2} \sup_{s_1 \in S_1} u(s_1, s_2)$$

In the simple setting of infinite win-lose PI-games (2 players, zero-sum, no chance nodes, and only payoffs are 1 and -1), this definition says a game is determined precisely when one player or the other has a **winning strategy**: a strategy $s_1^* \in S_1$ such that for any $\overline{s_2} \in S_2$, $u(s_1^*, s_2) = 1$ (and vice versa for player 2). **Question:** Is every win-lose PI-game determined?

Let's generalize to infinite zero-sum Pl-games

For a (possibly infinite) zero-sum 2-player Pl-game, we would like to similarly define the game to be "determined" if

$$\max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

But, for infinite games max & min may not exist! Instead, we call an (infinite) zero-sum game **<u>determined</u>** if:

$$\sup_{s_1 \in S_1} \inf_{s_2 \in S_2} u(s_1, s_2) = \inf_{s_2 \in S_2} \sup_{s_1 \in S_1} u(s_1, s_2)$$

In the simple setting of infinite win-lose PI-games (2 players, zero-sum, no chance nodes, and only payoffs are 1 and -1), this definition says a game is determined precisely when one player or the other has a **winning strategy**: a strategy $s_1^* \in S_1$ such that for any $s_2 \in S_2$, $u(s_1^*, s_2) = 1$ (and vice versa for player 2). Question: Is every win-lose PI-game determined? Answer: No

determinacy and its boundaries

For win-lose PI-games, we can define the payoff function by providing the set $Y = u_1^{-1}(1) \subseteq \Psi_T$, of complete plays on which player 1 wins (player 2 necessarily wins on all other plays).

If, additionally, we assume that players alternate moves, we can specify such a game as $\mathcal{G} = \langle T, Y \rangle$.

Fact For tree $T = \{L, R\}^*$, there are sets $Y \subseteq \Psi_T$, such that the win-lose PI-game $\mathcal{G} = \langle T, Y \rangle$ is **not** determined.

(Proof uses the "axiom of choice". See, e.g., [Mycielski, Ch. 3 of Handbook of GT,1992].)

Fortunately, large classes of win-lose PI-games are determined: **Theorem**([D. A. Martin'75]) Whenever Y is a so called "Borel set", the game $\langle \Sigma^*, Y \rangle$ is determined.

(A deep theorem, with connections to logic and set theory. Theorem holds even when the action alphabet Σ is infinite.)

food for thought: win-lose games on finite graphs Instead of a tree, we have a finite directed graph:

 \rhd Starting at "Start", does Player I have a strategy to "force" the play to reach the "Goal"?

 \triangleright Note: this is a (possibly infinite) win-lose PI-game.

 \triangleright Is this game determined for all finite graphs?

▷ If so, how would you compute a winning strategy for Player
1?