
Algorithmic Game Theory

and Applications

Lecture 11:

Games of Perfect Information

Kousha Etessami

finite games of perfect information

A perfect information (PI) game: 1 node per information set.

Theorem([Kuhn’53]) Every finite n-person extensive PI-game,
G, has a NE, in fact, a subgame-perfect NE (SPNE), in pure
strategies.
I.e., some pure profile, s∗ = (s∗1 , . . . , s

∗
n), is a SPNE.

To prove this, we use some definitions. For a game G with
game tree T , and for w ∈ T , define the subtree Tw ⊆ T , by:
Tw = {w ′ ∈ T | w ′ = ww ′′ for w ′′ ∈ Σ∗}.
Since tree is finite, we can just associate payoffs to the leaves.
Thus, the subtee Tw , in an obvious way, defines a
“subgame”, Gw , which is also a PI-game.
The depth of a node w in T is its length |w | as a string. The
depth of tree T is the maximum depth of any node in T . The
depth of a game G is the depth of its game tree.

proof of Kuhn’s theorem (backward induction)

Proof We prove by induction on the depth of a subgame Gw
that it has a pure SPNE, sw = (sw1 , . . . , s

w
n). Then s∗ := sε.

Base case, depth 0: In this case we are at a leaf w . there is
nothing to show: each player i gets payoff ui(w), and the
strategies in the SPNE s∗ are “empty” (it doesn’t matter
which player’s node w is, since there are no actions to take.)

Inductive step: Suppose depth of Gw is k + 1. Let
Act(w) = {a′1, . . . , a′r} be the set of actions available at the
root of Gw . The subtrees Twa′j

, for j = 1, . . . , r , each define a
PI-subgame Gwa′j , of depth ≤ k .
Thus, by induction, each game Gwa′j has a pure strategy SPNE,

swa
′
j = (s

wa′j
1 , . . . , s

wa′j
n).

To define sw = (sw1 , . . . , s
w
n), there are two cases to consider

......

two cases
1. w ∈ Pl0, i.e., the root node, w , of Tw is a chance node
(belongs to “nature”).
Let the strategy swi for player i be just the obvious “union”⋃

a′∈Act(w)
swa

′
i , of its pure strategies in each of the subgames.

(Explanation of “union” of disjoint strategy functions.)
Claim: sw = (sw1 , . . . , s

w
n) is a pure SPNE of Gw . Suppose not.

Then some player i could improve its expected payoff by
switching to a different pure strategy in one of the subgames.
But that violates the inductive hypothesis on that subgame.

2. w ∈ Pli , i > 0: the root, w , of Tw belongs to player i . For
a ∈ Act(w), let hwai (swa) be the expected payoff to player i in
the subgame Gwa. Let a′ = arg max

a∈Act(w)
hwai (swa). For

players i ′ 6= i , define swi ′ =
⋃

a∈Act(w)
swai ′ .

For i , define swi = (
⋃

a∈Act(w)
swai) ∪ {w 7→ a′}.

Claim: sw = (sw1 , . . . , s
w
n) is a pure SPNE of Gw .

algorithm for computing a SPNE in finite PI-games
The proof yields an EASY “bottom up” algorithm for
computing a pure SPNE in a finite PI-game:
We inductively “attach” to the root of every subtree Tw , a
SPNE sw for the game Gw , together with the expected payoff
vector hw := (hw1 (sw), . . . , hwn (sw)).
1.Initially: Attach to each leaf w the empty profile
sw = (∅, . . . , ∅), & payoff vector hw := (u1(w), . . . , un(w)).
2. While (∃ unattached node w whose children are attached)

I if (w ∈ Pl0) then
sw := (sw1 , . . . , s

w
n), where swi :=

⋃
a∈Act(w)

swai ;

hence hw is: hwi (sw) :=
∑

a∈Act(w)
qw (a) ∗ hwai (swa) ;

else if (w ∈ Pli & i > 0) then
Let sw := (sw1 , . . . , s

w
n), & hw := hwa

′
, where

a′ := arg max
a∈Act(w)

hwai (swa),

swi ′ :=
⋃

a∈Act(w)
swai ′ , for i ′ 6= i , and

swi := (
⋃

a∈Act(w)
swai)

⋃
{w 7→ a′};

consequences for zero-sum finite PI-games
Recall that, by the Minimax Theorem, for every finite
zero-sum game Γ, there is a value v ∗ such that for any NE
(x∗1 , x

∗
2) of Γ, v ∗ = U(x∗1 , x

∗
2), and

max
x1∈X1

min
x2∈X2

U(x1, x2) = v ∗ = min
x2∈X2

max
x1∈X1

U(x1, x2)

But it follows from Kuhn’s theorem that for extensive
PI-games G there is in fact a pure NE (in fact, SPNE) (s∗1 , s

∗
2)

such that v ∗ = u(s∗1 , s
∗
2) := h(s∗1 , s

∗
2), and thus that in fact

max
s1∈S1

min
s2∈S2

u(s1, s2) = v ∗ = min
s2∈S2

max
s1∈S1

u(s1, s2)

Definition A finite zero-sum game Γ is determined, if

max
s1∈S1

min
s2∈S2

u(s1, s2) = min
s2∈S2

max
s1∈S1

u(s1, s2)

It thus follows from Kuhn’s theorem that:
Proposition ([Zermelo’1912]) Every finite zero-sum PI-game,
G, is determined. Moreover, the value & a pure minimax
profile can be computed “efficiently” from G.

chess
Chess is a finite PI-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it’s a win-lose-draw PI-game: no
chance nodes possible payoffs are 1, −1, and 0.

Proposition([Zermelo’1912]) In Chess, either:
1. White has a “winning strategy”, or
2. Black has a “winning strategy”, or
3. Both players have strategies to force a draw.

A “winning strategy”, e.g., for White (Player 1) is a pure
strategy s∗1 that guarantees value u(s∗1 , s2) = 1, for all s2.

Question: Which one is the right answer??
Problem: The tree is far too big!!
Even with ∼ 200 depth & ∼ 5 moves per node:

5200 nodes!
Despite having an “efficient” algorithm to compute the value
v ∗ given the tree, we can’t even look at the whole tree! We
need algorithms that don’t look at the whole tree.

chess
Chess is a finite PI-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it’s a win-lose-draw PI-game: no
chance nodes possible payoffs are 1, −1, and 0.

Proposition([Zermelo’1912]) In Chess, either:
1. White has a “winning strategy”, or
2. Black has a “winning strategy”, or
3. Both players have strategies to force a draw.

A “winning strategy”, e.g., for White (Player 1) is a pure
strategy s∗1 that guarantees value u(s∗1 , s2) = 1, for all s2.

Question: Which one is the right answer??

Problem: The tree is far too big!!
Even with ∼ 200 depth & ∼ 5 moves per node:

5200 nodes!
Despite having an “efficient” algorithm to compute the value
v ∗ given the tree, we can’t even look at the whole tree! We
need algorithms that don’t look at the whole tree.

chess
Chess is a finite PI-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it’s a win-lose-draw PI-game: no
chance nodes possible payoffs are 1, −1, and 0.

Proposition([Zermelo’1912]) In Chess, either:
1. White has a “winning strategy”, or
2. Black has a “winning strategy”, or
3. Both players have strategies to force a draw.

A “winning strategy”, e.g., for White (Player 1) is a pure
strategy s∗1 that guarantees value u(s∗1 , s2) = 1, for all s2.

Question: Which one is the right answer??
Problem: The tree is far too big!!
Even with ∼ 200 depth & ∼ 5 moves per node:

5200 nodes!
Despite having an “efficient” algorithm to compute the value
v ∗ given the tree, we can’t even look at the whole tree! We
need algorithms that don’t look at the whole tree.

50 years of game-tree search
There’s > 50 years of research on chess & other game playing
programs, (Shannon, Turing, . . .). Heuristic game-tree search
is now very refined. See any AI text (e.g., [Russel-Norvig]).
If we have a function Eval(w) that heuristically “evaluates” a
node’s “goodness” score, we can use Eval(w) to stop the
search at, e.g., desired depth. While searching “top-down”, we
can “prune out” irrelevant subtrees using α-β-pruning. Idea:
while searching minmax tree, maintain two values: α-
“maximizer can assure score ≥ α”; & β- “minimizer can
assure score ≤ β”;

5 2 4 1 3 12 7

L R

L R

L R L R

L

L R L R

R

Player I:

Player II:

minmax search with α-β-pruning
Assume, for simplicity, that players alternate moves, root
belongs to Player 1 (maximizer), and −1 ≤ Eval(w) ≤ +1.
Score −1 (+1) means player 1 definitely loses (wins). Start
the search by calling: MaxVal(ε,−1,+1);
MaxVal(w , α, β)

If depth(w) ≥ MaxDepth then return Eval(w).
Else, for each a ∈ Act(w)

α := max{α,MinVal(wa, α, β)};
if α ≥ β, then return β

return α

MinVal(w , α, β)
If depth(w) ≥ MaxDepth, then return Eval(w).
Else, for each a ∈ Act(w)

β := min{β,MaxVal(wa, α, β)};
if β ≤ α, then return α

return β

boolean circuits as finite PI-games
Boolean circuits can be viewed as a zero-sum PI-game,
between AND and OR: OR the maximizer, AND the
minimizer: a win-lose PI-game: no chance nodes & only
payoffs are 1 and −1.

0 1

⇓

−1 −1 1 −1 −1 1

L R

L R

L L R

L

L L R

R

Player I:

Player II:

Note: game tree can be exponentially bigger, but efficient
bottom-up algorithm works directly on circuit.

Let’s generalize to infinite zero-sum PI-games
For a (possibly infinite) zero-sum 2-player PI-game, we would
like to similarly define the game to be “determined” if

max
s1∈S1

min
s2∈S2

u(s1, s2) = min
s2∈S2

max
s1∈S1

u(s1, s2)

But, for infinite games max & min may not exist! Instead, we
call an (infinite) zero-sum game determined if:

sup
s1∈S1

inf
s2∈S2

u(s1, s2) = inf
s2∈S2

sup
s1∈S1

u(s1, s2)

In the simple setting of infinite win-lose PI-games (2 players,
zero-sum, no chance nodes, and only payoffs are 1 and −1),
this definition says a game is determined precisely when one
player or the other has a winning strategy: a strategy
s∗1 ∈ S1 such that for any s2 ∈ S2, u(s∗1 , s2) = 1 (and vice
versa for player 2).
Question: Is every win-lose PI-game determined?

Answer: No

Let’s generalize to infinite zero-sum PI-games
For a (possibly infinite) zero-sum 2-player PI-game, we would
like to similarly define the game to be “determined” if

max
s1∈S1

min
s2∈S2

u(s1, s2) = min
s2∈S2

max
s1∈S1

u(s1, s2)

But, for infinite games max & min may not exist! Instead, we
call an (infinite) zero-sum game determined if:

sup
s1∈S1

inf
s2∈S2

u(s1, s2) = inf
s2∈S2

sup
s1∈S1

u(s1, s2)

In the simple setting of infinite win-lose PI-games (2 players,
zero-sum, no chance nodes, and only payoffs are 1 and −1),
this definition says a game is determined precisely when one
player or the other has a winning strategy: a strategy
s∗1 ∈ S1 such that for any s2 ∈ S2, u(s∗1 , s2) = 1 (and vice
versa for player 2).
Question: Is every win-lose PI-game determined?
Answer: No

determinacy and its boundaries

For win-lose PI-games, we can define the payoff function by
providing the set Y = u−11 (1) ⊆ ΨT , of complete plays on
which player 1 wins (player 2 necessarily wins on all other
plays).
If, additionally, we assume that players alternate moves, we
can specify such a game as G = 〈T ,Y 〉.
Fact For tree T = {L,R}∗, there are sets Y ⊆ ΨT , such that
the win-lose PI-game G = 〈T ,Y 〉 is not determined.
(Proof uses the “axiom of choice”. See, e.g., [Mycielski, Ch. 3
of Handbook of GT,1992].)
Fortunately, large classes of win-lose PI-games are determined:
Theorem([D. A. Martin’75]) Whenever Y is a so called
“Borel set”, the game 〈Σ∗,Y 〉 is determined.

(A deep theorem, with connections to logic and set theory.
Theorem holds even when the action alphabet Σ is infinite.)

food for thought: win-lose games on finite graphs
Instead of a tree, we have a finite directed graph:

Player II: Player I:

Start

Goal

� Starting at “Start”, does Player I have a strategy to “force”
the play to reach the “Goal”?
� Note: this is a (possibly infinite) win-lose PI-game.
� Is this game determined for all finite graphs?
� If so, how would you compute a winning strategy for Player
1?

