Algorithmic Game Theory
and Applications

Lecture 11:
Games of Perfect Information

Kousha Etessami

finite games of perfect information

A perfect information (P1) game: 1 node per information set.
Theorem([Kuhn'53]) Every finite n-person extensive Pl-game,
G, has a NE, in fact, a subgame-perfect NE (SPNE), in pure
strategies. o
l.e., some pure profile, s* = (sf,...,sr), is a SPNE.

To prove this, we use some definitions. For a game G with
game tree T, and for w € T, define the subtree 7,, C T, by:
Tw={w eT|w=wnw for w” e X}

Since tree is finite, we can just associate payoffs to the leaves.
Thus, the subtee T,,, in an obvious way, defines a
“subgame”, G,,, which is also a Pl-game.

The depth of a node w in T is its length |w| as a string. The
depth of tree T is the maximum depth of any node in T. The
depth of a game G is the depth of its game tree.

proof of Kuhn's theorem (backward induction)

Proof We prove by induction on the depth of a subgame G,
that it has a pure SPNE, s* = (s",...,sY). Then s* := s-.
Base case, depth 0: In this case we are at a leaf w. there is
nothing to show: each player i gets payoff u;(w), and the
strategies in the SPNE s* are “empty” (it doesn't matter
which player’'s node w is, since there are no actions to take.)

Inductive step: Suppose depth of G, is kK + 1. Let

Act(w) = {a},...,a.} be the set of actions available at the
root of G,,. The subtrees T,., for j =1,...,r, each define a
Pl-subgame G,,./, of depth g’k.

Thus, by inductijon, each game g,,,,aj/, has a pure strategy SPNE,

wa' wa’ wa’
s =(s 7,8 7).

To define s* = (s{,...,s”), there are two cases to consider

two cases

1. w € Ply, i.e., the root node, w, of T, is a chance node
(belongs to “nature”).

Let the strategy s; for player i be just the obvious “union”
Ua/eAct(w) s,-W"/, of its pure strategies in each of the subgames.
(Explanation of “union” of disjoint strategy functions.)

Claim: s = (s,...,s") is a pure SPNE of G,,. Suppose not.
Then some player i could improve its expected payoff by
switching to a different pure strategy in one of the subgames.
But that violates the inductive hypothesis on that subgame.

2. w € Pl;, i > 0: the root, w, of T, belongs to player i. For
a € Act(w), let h*?(s"?) be the expected payoff to player i in
the subgame Gy,. Let &' = argmax,_Acy h*2(s"?). For
players i' # i, define s =, Act) S

For i, define s = (UaeAct(W) sYU{w — a'}.

Claim: s" = (s/,...,s) is a pure SPNE of G,,. O

< n

algorithm for computing a SPNE in finite Pl-games
The proof yields an EASY “bottom up” algorithm for
computing a pure SPNE in a finite Pl-game:
We inductively “attach” to the root of every subtree T, a
SPNE s* for the game G,,, together with the expected payoff
vector h* := (hy'(s%),..., h%(s")).
1.Initially: Attach to each leaf w the empty profile
s¥ =(0,...,0), & payoff vector h* := (u1(w),. .., u,(w)).
2. While (3 unattached node w whose children are attached)
» if (w € Ply) then
sV = (51'”? ..., 5Y), where s¥ := UaeAct(W) s
hence h* is: hY(s") := ZaeACt(w) qw(a) * h*?(s"?) ;
else if (w € Pl; & i > 0) then
Let s% := (s}",...,sY), & h" := "', where
a = argmax_. Act(u) h?2(s"?),
sy = UaeACt(W) s, for i # i, and
5 = (U, Act S™) Ulw = 2};

consequences for zero-sum finite Pl-games

Recall that, by the Minimax Theorem, for every finite
zero-sum game [, there is a value v* such that for any NE
(x5, x3) of T', v* = U(x{, x3), and

max min U(xg, x2) = v* = min max U(xy, x)

X1EX1 x0€Xo x2€Xo x1€X1
But it follows from Kuhn's theorem that for extensive
Pl-games G there is in fact a pure NE (in fact, SPNE) (s;, s3)

such that v* = u(s], s3) := h(sf,s3), and thus that in fact
max min u(s;, s2) = v* = min max u(s;, s
51€51 €5, (1’ 2) €5, 51€5 (1’ 2)
Definition A finite zero-sum game [is determined, if
max min u(sy, S,) = min max u(sy, s
51651 52652 (17 2) 5265251651 (1’ 2)
It thus follows from Kuhn's theorem that:
Proposition ([Zermelo'1912]) Every finite zero-sum Pl-game,
G, is determined. Moreover, the value & a pure minimax
profile can be computed “efficiently” from §.

chess

Chess is a finite Pl-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it's a win-lose-draw Pl-game: no
chance nodes possible payoffs are 1, —1, and 0.
Proposition([Zermelo'1912]) In Chess, either:

1. White has a “winning strategy”, or

2. Black has a “winning strategy”, or

3. Both players have strategies to force a draw.

A "winning strategy’, e.g., for White (Player 1) is a pure
strategy s; that guarantees value u(s},s;) = 1, for all s,.

chess

Chess is a finite Pl-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it's a win-lose-draw Pl-game: no
chance nodes possible payoffs are 1, —1, and 0.
Proposition([Zermelo'1912]) In Chess, either:

1. White has a “winning strategy”, or

2. Black has a “winning strategy”, or

3. Both players have strategies to force a draw.

A "winning strategy’, e.g., for White (Player 1) is a pure
strategy s; that guarantees value u(s},s;) = 1, for all s,.
Question: Which one is the right answer??

chess

Chess is a finite Pl-game (after 50 moves with no piece taken,
it ends in a draw). In fact, it's a win-lose-draw Pl-game: no
chance nodes possible payoffs are 1, —1, and 0.
Proposition([Zermelo'1912]) In Chess, either:
1. White has a “winning strategy”, or
2. Black has a “winning strategy”, or
3. Both players have strategies to force a draw.
A "winning strategy’, e.g., for White (Player 1) is a pure
strategy s; that guarantees value u(s},s;) = 1, for all s,.
Question: Which one is the right answer??
Problem: The tree is far too big!!
Even with ~ 200 depth & ~ 5 moves per node:

5200 nodes!
Despite having an “efficient” algorithm to compute the value
v* given the tree, we can’t even look at the whole tree! We
need algorithms that don’t look at the whole tree.

50 years of game-tree search

There's > 50 years of research on chess & other game playing
programs, (Shannon, Turing, ...). Heuristic game-tree search
is now very refined. See any Al text (e.g., [Russel-Norvig]).

If we have a function Eval(w) that heuristically “evaluates” a
node's “goodness” score, we can use Eval(w) to stop the
search at, e.g., desired depth. While searching “top-down"”, we
can “prune out” irrelevant subtrees using a-(-pruning. Idea:
while searching minmax tree, maintain two values: a-
“maximizer can assure score > «"; & (- “minimizer can

assure score < 3" /O§)
player 1 @)

minmax search with a-(3-pruning

Assume, for simplicity, that players alternate moves, root
belongs to Player 1 (maximizer), and —1 < Eval(w) < +1.
Score —1 (+1) means player 1 definitely loses (wins). Start
the search by calling: MaxVal(e, —1,+1);
MaxVal(w, «, 3)
If depth(w) > MaxDepth then return Eval(w).
Else, for each a € Act(w)
a = max{a, MinVal(wa, o, 8)};
if « > (3, then return
return «
MinVal(w, «, 3)
If depth(w) > MaxDepth, then return Eval(w).
Else, for each a € Act(w)
B := min{ 3, MaxVal(wa, a,)},
if 8 < «, then return «
return 3

boolean circuits as finite Pl-games

Boolean circuits can be viewed as a zero-sum Pl-game,
between AND and OR: OR the maximizer, AND the
minimizer: a win-lose Pl-game: no chance nodes & only
payoffs are 1 and —1.

Let's generalize to infinite zero-sum Pl-games

For a (possibly infinite) zero-sum 2-player Pl-game, we would
like to similarly define the game to be “determined” if

max min u(s;,Sp) = min max u(sg, S
51€51 52652 (’) 52652 51651 (’)

But, for infinite games max & min may not exist! Instead, we
call an (infinite) zero-sum game determined if:

225 2k o) = oG feg vl)
In the simple setting of infinite win-lose Pl-games (2 players,
zero-sum, no chance nodes, and only payoffs are 1 and —1),
this definition says a game is determined precisely when one
player or the other has a winning strategy: a strategy
s; € S; such that for any s, € S,, u(s;,s2) =1 (and vice
versa for player 2).
Question: Is every win-lose Pl-game determined?

Let's generalize to infinite zero-sum Pl-games

For a (possibly infinite) zero-sum 2-player Pl-game, we would
like to similarly define the game to be “determined” if

max min u(s;,Sp) = min max u(sg, S
51€51 52652 (’) 52652 51651 (’)

But, for infinite games max & min may not exist! Instead, we
call an (infinite) zero-sum game determined if:

225 2k o) = oG feg vl)
In the simple setting of infinite win-lose Pl-games (2 players,
zero-sum, no chance nodes, and only payoffs are 1 and —1),
this definition says a game is determined precisely when one
player or the other has a winning strategy: a strategy
s; € S; such that for any s, € S,, u(s;,s2) =1 (and vice
versa for player 2).
Question: Is every win-lose Pl-game determined?
Answer: No

determinacy and its boundaries

For win-lose Pl-games, we can define the payoff function by
providing the set Y = u; *(1) C W+, of complete plays on
which player 1 wins (player 2 necessarily wins on all other
plays).

If, additionally, we assume that players alternate moves, we
can specify such a game as G = (T, Y).

Fact For tree T = {L, R}*, there are sets Y C W, such that
the win-lose Pl-game G = (T, Y) is not determined.

(Proof uses the “axiom of choice”. See, e.g., [Mycielski, Ch. 3
of Handbook of GT,1992].)

Fortunately, large classes of win-lose Pl-games are determined:
Theorem([D. A. Martin'75]) Whenever Y is a so called
“Borel set”", the game (¥X*,Y) is determined.

(A deep theorem, with connections to logic and set theory.
Theorem holds even when the action alphabet ¥ is infinite.)

food for thought: win-lose games on finite graphs
Instead of a tree, we have a finite directed graph:

Start

/

e

>> Starting at “Start”, does Player | have a strategy to “force”
the play to reach the “Goal”?

> Note: this is a (possibly infinite) win-lose Pl-game.

>> Is this game determined for all finite graphs?

> If so, how would you compute a winning strategy for Player
17

Player . @) Payer . (@)

Goal

