Algorithms and Data Structures 2018/19
Week 9 tutorial sheet

Below are a list of suggested exercises. You should also see the tutorial as a resource to get answers to questions you have, don’t feel compelled to stick to the sheet.

1. Draw an example of a weighted graph which has 2 MSTs.

2. Let G, W be a weighted graph in which all edge weights are distinct.
 Prove that the MST of G, W is unique.

3. In line 3 of Prim’s algorithm, there may be more than one fringe edge of minimum weight. Suppose we add all these minimum edges in one step. Does the algorithm still compute a MST?

4. Consider an arbitrary edge (u, v) in a graph G. There may or may not be an MST of G which contains (u, v), depending on the edge weights given by W.
 Give a $O(|V| + |E|)$ time algorithm to determine, for a given weighted graph (G, W), and a given edge (u, v) of G, whether (u, v) belongs to some MST of G.
 Justify your algorithm!