1. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is \(\langle 5, 10, 12, 5, 50, 6 \rangle \).

Simplified version of Ex. 15.2-1 of [CLRS] (2nd and 3rd eds)

2. Consider the problem of taking a set of \(n \) items with sizes \(s_1, \ldots, s_n \) and values \(v_1, \ldots, v_n \) respectively. We assume \(s_i, v_i \in \mathbb{N} \) for all \(1 \leq i \leq n \). Suppose we are also given a “knapsack capacity” \(C \in \mathbb{N} \). The knapsack problem is the problem of finding a subset \(S \subseteq \{1, \ldots, n\} \) such that \(\sum_{i \in S} s_i \leq C \) and such that \(\sum_{i \in S} v_i \) is maximized subject to the first constraint.

We write \(kp_{n,C} \) to denote the value \(\sum_{i \in S} v_i \) of the maximum-value knapsack on the set of all items. For any \(k \leq n \), and any \(\hat{C} \leq C, \hat{C} \in \mathbb{N} \), we can consider the same problem on the first \(k \) items in regard to capacity \(\hat{C} \). We denote the maximum-value knapsack for such a subproblem by \(kp_{k,\hat{C}} \).

(a) Prove that the following recurrence holds:

\[
kp_{k,\hat{C}} = \begin{cases}
0 & \text{if } k = 0 \\
kp_{k-1,\hat{C}} & \text{if } k > 0 \text{ but } s_k > \hat{C} \\
\max\{kp_{k-1,\hat{C}}, kp_{k-1,\hat{C}-s_k} + v_k\} & \text{otherwise.}
\end{cases}
\]

(b) Use the recurrence in (a) to develop a \(\Theta(n \cdot C) \) dynamic programming algorithm to compute the optimal knapsack wrt the original \(n \) items and capacity \(\hat{C} \).

3. Longest Common Subsequence A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Given a sequence \(s = s_1s_2\ldots s_n \), we say another sequence \(r = r_1\ldots r_k \) is a subsequence of \(s \) if there is a strictly increasing sequence \(i_1, i_2, \ldots, i_k \) of indices such that for all \(j = 1 \ldots k \) we have \(r_j = s_{i_j} \).

Given two sequences \(x \) and \(y \) we say that a sequence \(r \) is a common subsequence if \(r \) is a subsequence of both \(x \) and \(y \). In the longest common subsequence problem, we are given two sequences \(x = x_1\ldots x_n \) and \(y = y_1\ldots y_m \) and wish to find a maximum-length common subsequence of \(x \) and \(y \).

Give a \(O(mn) \)-time dynamic programming algorithm to solve the longest common subsequence problem.