1. In class we mostly worked with DFT for the case where \(n \) is a power of 2, and the polynomial being evaluated has degree \(n - 1 \). However, we also showed that we can apply the DFT and Inverse DFT when \(n \) is not a power of 2, by taking \(n' \) to be the closest power of 2 satisfying \(n \leq n' \), and adding some leading coefficients of value 0.

Make this idea formal: First show how to compute \(n' \). Also show that our DFT or Inverse DFT still takes \(\Theta(n \lg(n)) \) time in terms of the original value \(n \).

2. This exercise asks you to do a few complex number calculations. Evaluate each of these. (See also rules for multiplication and division in the FFT notes.)

 (a) \(2i(3 - i) \).
 (b) \(2i(i + 1)^2 + 4(i + 1)^3 \).
 (c) \(3i/(1 + i) \).

3. Compute \(\text{DFT}_4(0, 1, 2, 3) \). (do this directly, rather than by FFT, if you prefer).

 This is Exercise 30.2-2, p. 838 of [CLRS].

4. Use the FFT to efficiently multiply the two polynomials \(p(x) = x - 4 \) and \(q(x) = x^2 - 1 \).

 Use the following steps:

 (a) First work out what will be the degree of the product polynomial \(pq \). Take \(\deg(pq) + 1 \) as our \(n \) (and if necessary round up to the nearest power of 2).

 (b) For this value of \(n \) (which we made sure was a power of 2), use trigonometry to write down each of the \(n \)th roots-of-unity (so we have them to work with).

 (c) Calculate the DFT for \(p(x) \) for \(n \)th roots of unity.

 (d) Calculate the DFT for \(q(x) \) for \(n \)th roots of unity.

 (e) Do pointwise multiplication of the two DFTs to get the DFT of \(pq(x) \) for \(n \)th roots of unity.

 (f) Calculate the Inverse DFT of the DFT for \(pq(x) \), to obtain the polynomial \(pq \). It’s a good idea to do this via DFT (and then swapping), like we saw in class.

 (g) Check your answer by straight multiplication.