1. Given a flow network $N = (G = (V, E), c, s, t)$, let f_1 and f_2 be two flows in N (i.e., satisfying the three flow properties wrt N). The flow sum $f_1 + f_2$ is the function from $V \times V$ to \mathbb{R} defined by:

$$(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$$

for all $u, v \in V$.

Which of the three flow properties (wrt N) will $f_1 + f_2$ satisfy, and which will it violate?

answer: The three properties are *capacity constraints*, *skew-symmetry*, and *flow conservation*.

Capacity constraints: $f_1 + f_2$ might *violate* the capacity constraints. As an example, consider the network of question 2. Let f_1 be the flow shown in question 2. Let f_2 be the flow that ships 4 units along the path $s \rightarrow x \rightarrow y \rightarrow t$. Then if we add these flows directly as prescribed in this question, we will (for example) define

$$(f_1 + f_2)(y, t) = f_1(y, t) + f_2(y, t) = 4 + 4 = 8.$$

This certainly breaks the capacity constraint for (y, t) which is 4.

Skew-symmetry: $f_1 + f_2$ will *satisfy* skew-symmetry. We know f_1 and f_2 individually satisfy skew-symmetry, because they are flows. Therefore for any (u, v), we have

$$(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v) = -f_1(v, u) - f_2(v, u) = -(f_1 + f_2)(v, u),$$

as required (using the defn of $f_1 + f_2$ and the skew-symmetry property for f_1, f_2).

Flow conservation: $f_1 + f_2$ will *satisfy* flow conservation. Flow conservation for a flow f states that for all $u \in V \setminus \{s, t\}$, we have $\sum_{v \in V} f(u, v) = 0$. We know this holds individually for f_1, f_2. Let $u \in V \setminus \{s, t\}$. Then we can write

$$\sum_{v \in V} (f_1 + f_2)(u, v) = \sum_{v \in V} (f_1(u, v) + f_2(u, v)) = \sum_{v \in V} f_1(u, v) + \sum_{v \in V} f_2(u, v) = 0 + 0 = 0.$$

Hence flow conservation holds for $f_1 + f_2$.

tutors: Use this as an opportunity to point out the difference between this Q and the case when f_2 is a flow in the residual network (wrt f_1) - in that case everything has been set up for the capacity condition to also hold.
Two questions:

(a) Find a pair of subsets \(X, Y \subseteq V \) such that \(f(X, Y) = -f(V - X, Y) \).

(b) Find a different pair of subsets \(X, Y \subseteq V \) such that \(f(X, Y) \neq -f(V - X, Y) \).

Answer: The point of this question is to get thinking about flow between *sets of vertices*, by applying Lemma 3 of Lecture slides 10-11. However, it might be good to think about specific examples of (a), (b) first, before looking at the details of what the pattern is.

What we are asking is: when is it the case that

\[
f(X, Y) + f(V - X, Y) = 0?
\]

Remember from Lemma 3 (part 3) of slides 10-11 that for any two *disjoint* sets \(X', Y' \subseteq V \), and any other set \(Z' \), and any flow \(f \), we have \(f(X', Z') + f(Y', Z') = f(X' \cup Y', Z') \). Observe that for our question, certainly \(X \) and \(V - X \) are disjoint sets.

Hence by Lemma 3 (3), we know

\[
f(X, Y) + f(V - X, Y) = f(X \cup (V - X), Y) = f(V, Y).
\]

So we are testing whether \(f(V, Y) = 0 \) for (a), and whether \(f(V, Y) \neq 0 \) for (b) - once this is satisfied, \(X \) can be anything...

To make \(f(V, Y) = 0 \), we should either take \(Y \) such that \(Y \cap \{s, t\} = \emptyset \), or \(Y \cap \{s, t\} = \{s, t\} \). This can be seen by repeated application of part (3) of Lemma 3 from slides 10-11. To make \(f(V, Y) \neq 0 \), we should take \(Y \) such that \(|Y \cap \{s, t\}| = 1 \).

Here are some concrete examples of this behaviour:

(a) As a concrete example, let \(Y = \{v, x\} \). \(X \) can be *any* set, take \(X = \{w\} \) as an example. Then \(f(X, Y) = -12 + 4 = -8 \). Then \(f(V - X, Y) = 11 + 8 - 11 = 8 \).

(b) As a concrete example, take \(Y = \{s\} \). Take \(X = \{w\} \) again. Then we have \(f(X, Y) = 0 \). We have \(f(V - X, Y) = -11 - 8 = -19 \).
3. **Question:** execute the Ford-Fulkerson algorithm (*using the Edmonds-Karp heuristic*) on the Network below:

Answer: If we are using the Edmonds-Karp heuristic, then every time we search for an augmenting path, we must choose a shortest augmenting path.

For our given network, we can see that on the first iteration, the path \(p_1 = s \rightarrow v \rightarrow w \rightarrow t \) is a shortest path. We have \(c(p_1) = 12 \). Hence we define the flow \(f_1 = f_{p_1} \) by

\[
f_1(e) = f_{p_1}(e) = \begin{cases}
12 & \text{for } e = (s, v), (v, w), (w, t) \\
-12 & \text{for } e = (v, s), (w, v), (t, w) \\
0 & \text{otherwise}
\end{cases}
\]

Pictorially, we have

The *residual network* \(N_{f_1} \) is as follows:

We now examine \(N_{f_1} \) to find a shortest augmenting path. We find that \(p_2 = s \rightarrow x \rightarrow y \rightarrow t \) is a shortest augmenting path in \(N_{f_1} \), min capacity 4, see above.... We therefore define a new flow \(f_{p_2} \) such that 4 units are shipped along the edges of the path \(p_2 \), and -4 shipped in the backwards direction of \(p_2 \). Then we define the flow \(f_2 = f_1 + f_{p_2} \). Remember to point out this is possible *only* because \(f_1 \) is a flow in \(N \) and \(f_2 \) is a flow in the *residual* network \(N_{f_1} \). Below is the flow \(f_2 = f_1 + f_{p_2} \) in \(N \).
Below is the residual network N_{f_2}. If we again try the Edmonds-Karp rule for finding an augmenting path of shortest possible length, we find the path $p_3 = s \rightarrow x \rightarrow y \rightarrow w \rightarrow t$ (this is of length 4, but there are no paths of length 3 or less in N_{f_2}). The min capacity along the path is 7.

We define a new flow f_{p_3} in N_{f_2} by shipping 7 units along p_3. Then we define the flow f_3 in N as $f_3 = f_2 + f_{p_3}$. The flow looks as follows:

We compute the residual network N_{f_3}, see below for a picture.

By Ford-Fulkerson’s algorithm, we now try for a (shortest) augmenting path in the N_{f_3}. However, if we examine N_{f_3}, we see that there is *no* augmenting path from s to t - the set of vertices accessible from s is now $\{s, v, x, y\}$.

Hence we terminate, returning the flow f_3, of value 23.
4. **Question:** A well-known problem in graph theory is the problem of computing a maximum matching in a bipartite graph G. Give an algorithm which shows how to solve this problem in terms of the network flow problem.

Definitions:
A (undirected) graph $G = (V, E)$ is bipartite if we have $V = L \cup R$ for two disjoint sets L, R, such that for every edge $e = (u, v)$ exactly one of the vertices u, v lies in L, and the other in R.

A matching in an (undirected) graph G is a collection M of edges, $M \subseteq E$, such that for every vertex $v \in V$, v belongs to at most one edge of M.

A maximum matching is a matching of maximum cardinality (for a specific graph).

Answer:
To solve this question, we will design a network, based on the bipartite graph G, where a maximum flow in the network corresponds to a maximum matching in G.

Define the vertex set V' for our network N to be $V' = L \cup R \cup \{s, t\}$, where s, t are two new distinguished vertices.

Define the (directed) edge set E' as follows:

$$E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, (u, v) \in E\} \cup \{(v, t) : v \in R\}.$$

notice that the middle set in the union above is just the edge set E of the original graph, with all of these edges now directed from L to R.

Define the capacities of the network as follows:

$$c(s, u) = 1 \quad \text{for every } u \in L$$
$$c(u, v) = 1 \quad \text{for every } u \in L, v \in R, (u, v) \in E$$
$$c(v, t) = 1 \quad \text{for every } v \in R$$

I now claim that every flow of value k in N corresponds to a matching of cardinality k in G. The max flow = maximum matching follows directly from this.

\Rightarrow Suppose f is a flow of value k in N. We assume without any loss of generality that f is an integral flow (because all capacities are integers).

Recall that in N, the vertex s has $|L|$ neighboring edges (s, u). By definition of the value of a flow, $k = \sum_{u \in V} f(s, u) = \sum_{u \in L} f(s, u)$. Therefore exactly k of the (s, u) edges carry 1 unit of flow each (since no (s, u) edge can carry more than 1).

Moreover by Lemma 11 in Lecture slides 13-14, every (S, T) cut in the network must be carrying flow of value k. Hence if we take $S = \{s\} \cup L$, then we see there are exactly k (u, v) edges in the network which carry exactly 1 unit of flow from left to right (since no (u, v) edge can carry more than this).

Define $M = \{(u, v) \in E : f(u, v) = 1 \text{ in } N\}$. Certainly $|M| = k$. I now show that M is a matching. For every $u \in L$, the flow conservation property must hold. For this
network, this means that for every $u \in L$, we require $(\sum_{v \in R} f(u,v)) + f(u,s) = 0$. Therefore if $f(s,u) = 0$, we require $f(u,v) = 0$ for every $(u,v) \in E$.

If $f(s,u) = 1$ (so $f(u,s) = -1$), we require $f(u,v) = 1$ for exactly one $(u,v) \in E$ (using our integer assumption). Hence every $u \in L$ will appear at most once in M. Hence M is a matching.

\Leftarrow This is easier. Just explain how the matching of G gets mapped to N and check flow conservation.