1. The recurrence (as usual n is $j - i + 1$) is

$$T_{RM}(n) = \begin{cases}
1 & \text{if } n = 1 \\
T_{RM}(\lfloor \frac{n}{2} \rfloor) + T_{RM}(\lceil \frac{n}{2} \rceil) + 4 & \text{if } n > 1
\end{cases}$$

The 1 for the case of $n = 1$ comes from the observation that the only work done in this case is the comparison of i and j. The 4 in the recursive case comes from the $i < j$ test, the assignment to m (I guess it is debatable how many operations this corresponds to), the test $\ell < r$, and the subsequent return.

Then using the Master theorem, we have $k = 0$ and $c = 1$. Hence running time is $\Theta(n)$.

2. (a) We prove $T(\hat{n}) = (\hat{n})^2(1 + \log(\hat{n}))$ for all powers-of-2 by induction.

Base case: $p = 0$ and $n = 1$. Then $T(1) = 1$ by definition. Also $1^2(1 + \log(1)) = 1^2(1 + 0) = 1$. So true.

Induction hypothesis (IH): $T(\hat{n}) = (\hat{n})^2(1 + \log(\hat{n}))$ for $\hat{n} = 1, \ldots 2^p$.

Induction step: We must prove that under the (IH), that the claim also holds for $\hat{n} = 2^{p+1}$.

We have $p + 1 \geq 1$, so $2^{p+1} \geq 2$, so we can apply the recurrence to get

$$T(2^{p+1}) = 4T(\lfloor 2^{p+1}/2 \rfloor) + 2^{2(p+1)}$$

$$= 4T(2^p) + 2^{2(p+1)} \quad \text{(because } 2^{p+1}/2 = 2^p \in \mathbb{N})$$

$$= 4(2^p)^2(1 + \log(2^p)) + 2^{2(p+1)} \quad \text{(by (IH))}$$

$$= 2^{2p+2}(1 + \log(2^p)) + 2^{2(p+1)}$$

$$= 2^{2p+2}(1 + \log(2^{p+1})) \quad \text{(by } \log(2 \cdot 2^p) = \log(2) + \log(2^p) = 1 + \log(2^p))$$

$$= 2^{2p+2}(1 + \log(2^{p+1})),$$

as required.

Note that the first line is obtained by substituting $\hat{n} = 2^{p+1}$ into the recurrence; the second line is by observing that $\lfloor \cdot \rfloor$ is unnecessary as $2^{p+1}/2 = 2^p$ is an integer; the third line is due to substituting the (IH) for $T(2^p)$, 2^p being strictly smaller than 2^{p+1}; the fourth and fifth lines come from applying multiplication and properties-of-logs directly; and the final line by rearranging terms.
(b) We can just prove \(T(n) \leq T(n+1) \) for all \(n \in \mathbb{N} \). Then we can use transitivity to observe that \(T(j) \leq T(k) \) for all \(j < k, j, k \in \mathbb{N} \). There are other ways, eg working explicitly with \(n \) and \(m \), but the (IH) would be slightly messier in wording - eg, see slide 14 of lectures 2-3: where the (IH) is less tidy.

First we prove the base case.

Base case: \(k = 1 \). We have \(T(1) = 1 \); however \(T(2) = 4 \cdot T(1) + 2^2 = 8 \); clearly \(T(1) < T(2) \).

Next we formulate our Induction Hypothesis.

Induction Hypothesis (IH): for every \(k, 1 \leq k < n \), we have \(T(k) < T(k+1) \).

Induction step: Based on the (IH) for all \(k < n \), we will show \(T(n) \leq T(n+1) \) also. Note we must have \(n \geq 2 \) (else we’d be in the base case), so the recursive step of the recurrence applies to both \(T(n) \) and also \(T(n+1) \). We can write

\[
T(n) = 4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n^2
\]

\[
T(n+1) = 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) + (n+1)^2
\]

Now observe that either

\[
\left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \text{ or } \left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor + 1.
\]

In the first case (\(n \) even, \(\left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \)), we have \(4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) = 4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \).

In the second case (\(n \) odd) the (IH) can be applied to \(\left\lfloor \frac{n}{2} \right\rfloor \) because \(\left\lfloor \frac{n}{2} \right\rfloor \leq n \) (this is true always when \(n \geq 2 \)). Hence the (IH) tells us that \(4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) < 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \).

We get \(4T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \leq 4T\left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \) in either case.

Also \(n^2 < (n+1)^2 \). Combining these two facts, we get that overall \(T(n) < T(n+1) \) (ie, given the (IH), the claim holds for \(n \) also)

By induction, we have \(T(n) < T(n+1) \) for all \(n \in \mathbb{N} \).

(*) Note we really needed a recurrence with \(= \) and with explicit constants (no \(O \), no \(\Theta \)) to prove the strictly increasing. This is because we substituted the \(T \) on the right-hand side and the left-hand side of the claim \(T(j) < T(k) \).

(c) Now consider an arbitrary \(n \in \mathbb{N} \). Let \(p \) be the greatest integer such that \(2^p \leq n \) (note we are then guaranteed \(2^p > n/2 \)).

By (a), \(T(2^p) = (2^p)^2(1 + \lg(2^p)) \). By (b), we know that \(T(n) \geq T(2^p) \).

By above \(2^p > n/2 \). Hence we have

\[
T(n) \geq T(2^p) = (2^p)^2(1 + \lg(2^p)) = (n/2)^2(1 + \lg(n/2)) = (n^2/4)(\lg(n)).
\]
This gives $\Omega(n^2 \lg(n))$ for $n_0 = 1$ and $c = 1/4$.

3. Use Strassen’s algorithm to compute the matrix product

$$
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\begin{pmatrix}
8 & 4 \\
6 & 2
\end{pmatrix}.
$$

Tutors to do.

Just set up the P1 - P7 equations on the board, multiply them out, then evaluate C_{11}, C_{12}, C_{21}, C_{22}. You’ll need to have lecture 4 (or the book) along with you.

4. Describe an algorithm for efficiently multiplying a $(p \times q)$ matrix with a $(q \times r)$ matrix, where p, q, r are arbitrary positive integers. The running time should be $\Theta(n^{\lg(7)})$, where $n = \max\{p, q, r\}$.

Answer:
Let A be the $p \times q$ matrix, and B be the $q \times r$ matrix. We round up the matrices to become $n \times n$ matrices A', B', keeping A in the top lhs of A' (and similarly B in the top lhs of B'). All the entries outside the top-left $p \times q$ of A' are 0 and similarly for entries outside the top-left $q \times r$ of B'.

We call Strassen(A', B') and then extract the top-left hand $p \times r$ matrix.

For this alg it’s clear that the runtime is $\Theta(n^{\lg(7)})$ (because that is the running time of Strassen on $n \times n$ matrices, and because the “extra work” in mapping to-and-from $n \times n$ matrices is only $O(n^2)$).

observation: A tangential issue wrt this algorithm is that for this general “rectangular” case it is NOT clear that this “reduce to Strassen” algorithm is often a good strategy. Suppose wlog that $p = \max\{p, q, r\}$. Then the naive matrix multiplication algorithm is $\Theta(pqr)$. Our asymptotic running-time from “reduce to Strassen” is only better if $qr \geq p^{\lg(7)} \sim p^{1.8}$, which is not necessarily the case in the “rectangular” setting.