The Master Theorem for solving recurrences

Theorem 3.1

Let $n_0 \in \mathbb{N}$, $k \in \mathbb{N}_0$ and $a, b \in \mathbb{R}$ with a > 0 and b > 1, and let $T : \mathbb{N} \to \mathbb{R}$ satisfy the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n < n_0, \\ a \cdot T(n/b) + \Theta(n^k) & \text{if } n \ge n_0. \end{cases}$$

Let $c = \log_b(a)$; we call c the **critical exponent**. Then

$$T(n) = \begin{cases} \Theta(n^c) & \text{if } k < c \qquad (I), \\ \Theta(n^c \cdot \lg(n)) & \text{if } k = c \qquad (II), \\ \Theta(n^k) & \text{if } k > c \qquad (III). \end{cases}$$

The n/b in the recurrence may stand for both $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$. More precisely, the theorem holds if we replace $a \cdot T(n/b)$ in the recurrence by $a_1 \cdot T(\lfloor n/b \rfloor) + a_2 \cdot T(\lceil n/b \rceil)$ for any $a_1, a_2 \ge 0$ with $a_1 + a_2 = a$.

A&DS Lecture 3

The Master Theorem (cont'd)

- We don't have time to prove the Master Theorem in class. You can find the proof in Section 4.4 of [CLRS]. Section 4.4 of [CLR]. Their version of the M.T. is a bit more general than ours.
- **Homework:** To get a feel for the Master Theorem, consider the following examples:

T(n) = 4T(n/2) + n, $T(n) = 4T(\lfloor n/2 \rfloor) + n^2,$ $T(n) = 4T(n/2) + n^3.$

Use unfold-and-sum to answer the first and third of these. We solved the second one *by first principles* in lecture 2, and it hurt! (mostly because of the $\lfloor \ \ \rfloor$).

Matrix Multiplication

Recall

The product of two $(n \times n)$ -matrices

$$A=(\mathfrak{a}_{\mathfrak{i}\mathfrak{j}})_{1\leq\mathfrak{i},\mathfrak{j}\leq\mathfrak{n}}\quad\text{and}\quad B=(\mathfrak{b}_{\mathfrak{i}\mathfrak{j}})_{1\leq\mathfrak{i},\mathfrak{j}\leq\mathfrak{n}}$$

is the $(n\times n)\text{-matrix}\; C=AB$ where $C=(c_{\mathfrak{i}\mathfrak{j}})_{1\leq\mathfrak{i},\mathfrak{j}\leq n}$ with entries

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

The Matrix Multiplication Problem

Input: $(n \times n)$ -matrices A and B Output: the $(n \times n)$ -matrix AB

Matrix Multiplication

column j

- n multiplications and n additions for each $c_{ij}.$
- there are n^2 different c_{ij} entries.

A straightforward algorithm

 $\textbf{Algorithm}\;\mathsf{MATMULT}(A,B)$

Requires

$\Theta(n^3)$

arithmetic operations (additions and multiplications).

A naive divide-and-conquer algorithm

Observe

lf

$$A = \begin{pmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{pmatrix}$$

for $(n/2 \times n/2)\text{-submatrices}\;A_{ij}$ and B_{ij} then

$$AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

note: We are assuming n is even.

A naive divide-and-conquer algorithm

Suppose $i \leq n/2$ and $j \leq n/2.$ Then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \frac{\sum_{k=1}^{n/2} a_{ik} b_{kj}}{\in A_{11}B_{11}} + \frac{\sum_{k=n/2+1}^{n} a_{ik} b_{kj}}{\in A_{12}B_{21}}$$

A&DS Lecture 3

Mary Cryan

A naive divide-and-conquer algorithm (cont'd)

Assume n is a power of 2.

Algorithm D&C-MATMULT(A, B)

- 1. $n \leftarrow$ number of rows of A
- 2. if n = 1 then return $(a_{11}b_{11})$
- 3. **else**

4. Let
$$A_{ij}$$
, B_{ij} (for $i, j = 1, 2$ be $(n/2 \times n/2)$ -submatrices such that
 $A = \left(\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array} \right)$ and $B = \left(\begin{array}{c|c} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{array} \right)$
5. Recursively compute $A_{11}B_{11}$, $A_{12}B_{21}$, $A_{11}B_{12}$, $A_{12}B_{22}$,
 $A_{21}B_{11}$, $A_{22}B_{21}$, $A_{21}B_{12}$, $A_{22}B_{22}$

6. Compute
$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
, $C_{12} = A_{11}B_{12} + A_{12}B_{22}$,
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$, $C_{22} = A_{21}B_{12} + A_{22}B_{22}$
7. return $\left(\begin{array}{c|c} C_{11} & C_{12} \\ \hline C_{21} & C_{22} \end{array}\right)$

Analysis of D&C-MATMULT

T(n) is the number of operations done by D&C-MATMULT.

- Lines 1, 2, 3, 4, 7 require $\Theta(1)$ arithmetic operations
- Line 5 requires 8T(n/2) arithmetic operations
- Line 6 requires $4(n/2)^2 = \Theta(n^2)$ arithmetic operations. **Remember!** Size of matrices is $\Theta(n^2)$, NOT $\Theta(n)$

We get the recurrence

$$\mathsf{T}(\mathfrak{n}) = 8\mathsf{T}(\mathfrak{n}/2) + \Theta(\mathfrak{n}^2).$$

Since $\log_2(8) = 3$, the Master Theorem yields

$$\mathsf{T}(\mathfrak{n}) = \Theta(\mathfrak{n}^3).$$

(No improvement over MATMULT . . . why?)

A&DS Lecture 3

Strassen's algorithm (1969)

Assume n is a power of 2.

Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{pmatrix}.$$

We want to compute

$$AB = \left(\begin{array}{c|c} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{array} \right)$$
$$= \left(\begin{array}{c|c} C_{11} & C_{12} \\ \hline C_{21} & C_{22} \end{array} \right).$$

Strassen's algorithm uses a *trick* in applying Divide-and-Conquer.

A&DS Lecture 3

Strassen's algorithm (cont'd)

Let

$$P_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22})B_{11}$$

$$P_{3} = A_{11}(B_{12} - B_{22})$$

$$P_{4} = A_{22}(-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{12})B_{22}$$

$$P_{6} = (-A_{11} + A_{21})(B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

Then

$$C_{11} = P_1 + P_4 - P_5 + P_7 \qquad C_{12} = P_3 + P_5$$

$$C_{21} = P_2 + P_4 \qquad C_{22} = P_1 + P_3 - P_2 + P_6$$
(**)

A&DS Lecture 3

Mary Cryan

Checking Strassen's algorithm - C11

We will check the equation for C_{11} is correct.

Strassen's algorithm computes $C_{11} = P1 + P4 - P5 + P7$. We have

 $\begin{array}{l} {\sf P1} \ = \ ({\sf A11} + {\sf A22})({\sf B11} + {\sf B22}) \\ = \ {\sf A11B11} + {\sf A11B22} + {\sf A22B11} + {\sf A22B22}. \\ {\sf P4} \ = \ {\sf A22}(-{\sf B11} + {\sf B21}) \ = \ {\sf A22B21} - {\sf A22B11}. \\ {\sf P5} \ = \ ({\sf A11} + {\sf A12}){\sf B22} \ = \ {\sf A11B22} + {\sf A12B22}. \\ {\sf P7} \ = \ ({\sf A12} - {\sf A22})({\sf B21} + {\sf B22}) \\ = \ {\sf A12B21} + {\sf A12B22} - {\sf A22B21} - {\sf A22B22}. \\ \end{array}$

Then P1 + P4 - P5 = A11B11 + A22B22 + A22B21 - A12B22. Then P1 + P4 - P5 + P7 = A11B11 + A12B21, which is C11.

Class exercise: check other 3 equations.

Strassen's algorithm (cont'd)

Crucial Observation

Only 7 multiplications of $(n/2 \times n/2)$ -matrices are needed to compute AB.

Algorithm STRASSEN(A, B)

- 1. $n \leftarrow n$ number of rows of A
- 2. if n = 1 then return $(a_{11}b_{11})$
- *3.* **else**

4. Determine
$$A_{ij}$$
 and B_{ij} for $i, j = 1, 2$ (as before)

- 5. Compute $P_1, ..., P_7$ as in (*)
- 6. Compute $C_{11}, C_{12}, C_{21}, C_{22}$ as in (**)

7. return
$$\begin{pmatrix} C_{11} & C_{12} \\ \hline C_{21} & C_{22} \end{pmatrix}$$

A&DS Lecture 3

Mary Cryan

Analysis of Strassen's algorithm

Let T(n) be the number of arithmetic operations performed by STRASSEN.

- Lines 1-4 and 7 require $\Theta(1)$ arithmetic operations
- Line 5 requires $7T(n/2) + \Theta(n^2)$ arithmetic operations
- Line 6 requires $\Theta(n^2)$ arithmetic operations. remember.

We get the recurrence

$$\Gamma(\mathfrak{n}) = 7T(\mathfrak{n}/2) + \Theta(\mathfrak{n}^2).$$

Since $\log_2(7) \approx 2.807 > 2$, the Master Theorem yields

$$\mathsf{T}(\mathfrak{n}) = \Theta(\mathfrak{n}^{\log_2(7)}).$$

Remarks on matrix multiplication

• The current best (for asymptotic running time) algorithm is by Coppersmith & Winograd (1987), and has a running time of

$$\Theta(\mathfrak{n}^{2.376}).$$

- In practice, the "school" MATMULT algorithm tends to outperform Strassen's algorithm, unless the matrices are huge.
- The best known lower bound for matrix multiplication is

$\Omega(n^2).$

This is a *trivial* lower bound (need to look at all entries of each matrix). Amazingly, $\Omega(n^2)$ is believed to be "the truth"! **Open problem:** Can we find a $O(n^{2+o(1)})$ -algorithm for Matrix Multiplication of $n \times n$ matrices?

Reading Assignment

[CLRS] Section 4.3 "Using the Master method" (pp. 73-75) and Section 28.2 (pp. 735-741). *Corresponds to Section 4.3 (pp. 61-63) and Section 31.2 (pp. 739-745) in [CLR].*

See Links from course webpage (for history).

Problems

- 1. Exercise 4.3-2, p. 75 of [CLRS]. *Ex 4.3-2, page 64 of [CLR].*
- 2. Exercise 28.2-1, p. 741 of [CLRS]. *Ex 31.2-1, page 744 of [CLR].*
- 3. On page 5, I state that the "school" algorithm MATMULT has running time $\Theta(n^3)$. The $O(n^3)$ is fairly easy to see (I think! If not, ask me). Show the $\Omega(n^3)$ bound for MATMULT.