1. Kruskal’s algorithm can return different spanning trees for the same input graph \(G \), depending on how ties are broken when the edges are initially sorted.

Show that for every MST \(T \) of \(G \), there is some way to sort the edges of \(G \) in Kruskal’s algorithm so that \(T \) will be the MST that is returned.

This is Exercise 23.2-1 of [CLRS]

2. In class on Tuesday 6th Nov, we saw Kruskal’s algorithm, and discussed various Disjoint sets implementations for Kruskal and their running-times. We did not prove Step (iii) of correctness for Kruskal’s Algorithm: that during the execution of K RUSKAL, \((V,F)\) is always contained in some MST of \(G \).

Prove this now.

It is similar to Step (iii) for PRIM, but not identical.

3. Suppose that all edge weights in a graph \(G \) are integers in the range 1 to \(|V|\). How fast can you make Kruskal’s algorithm run in this case?

What if the edge weights are integers in the range from 1 to \(C \), for some constant \(C \)?

This is Exercise 23.2-4 of [CLRS]

4. Given a point \(p_0 = (x_0, y_0) \), the right horizontal ray from \(p_0 \) is the set of points \(\{ p = (x, y_0) : x \geq x_0 \} \), that is, it is the set of points due right of \(p_0 \). Show how to determine whether a right horizontal ray from a given \(p_0 \) intersects a line segment \(\overline{p_1p_2} \) in \(O(1) \) time, by reducing the problem to that of two line segments intersecting.

This is Ex. 33.1-6 of [CLRS]

5. Show that there may be \(\Theta(n^2) \) intersections in a set of \(n \) line segments.

This is Ex. 33.2-1 of [CLRS]

Mary Cryan