
Algorithms and Data Structures 2015/16
Week 6 tutorial sheet (Tues 23rd - Fri 26th February)

All questions from Q2 onwards depend on the “Dynamic Programming” material from
Monday 22nd February. You may want to read the notes for this topic in advance of the
22nd, in order to prepare for the tutorial.

1. Show how to sort n integers in the range {1, . . . , n2} in O(n) time.

2. Find an optimal parenthesization of a matrix-chain product whose sequence of dimen-
sions is 〈5, 10, 12, 5, 50, 6〉.
Simplified version of Ex. 15.2-1 of [CLRS] (2nd and 3rd eds)

3. Consider the problem of taking a set of n items with sizes s1, . . . , sn, and values
v1, . . . , vn respectively. We assume si, vi ∈ N for all 1 ≤ i ≤ n. Suppose we are
also given a “knapsack capacity” C ∈ N. The knapsack problem is the problem of find-
ing a subset S ⊆ {1, . . . , n} such that

∑
i∈S si ≤ C and such that

∑
i∈S vi is maximized

subject to the first constraint.

We write kpn,C to denote the value
∑

i∈S vi of the maximum-value knapsack on the set

of all items. For any k ≤ n, and any Ĉ ≤ C, Ĉ ∈ N, we can consider the same problem
on the first k items in regard to capacity Ĉ. We denote the maximum-value knapsack
for such a subproblem by kpk,Ĉ.

(a) Prove that the following recurrence holds:

kpk,Ĉ =


0 if k = 0

kpk−1,Ĉ if k > 0 but sk > Ĉ
max{kpk−1,Ĉ, kpk−1,Ĉ−sk + vk} otherwise.

(b) Use the recurrence in (a) to develop a Θ(n ·C) dynamic programming algorithm
to compute the optimal knapsack wrt the original n items and capacity C.

4. On slide 9 of Lectures 10.11 we claim that the number of possible parenthesizations of
a Matrix-chain sequence containing n matrices is Ω(3n).

Set up a recurrence for the number of parenthesizations.

Prove the Induction step wrt c · 3n (you do not need to prove the base cases - there are
too many of these, as n0 is high. This is why the proof is mentioned as “ugly” in the
slides).

1



5. Longest Common Subsequence A subsequence of a given sequence is just the given
sequence with some elements (possibly none) left out. Given a sequence s = s1s2 . . . sn,
we say another sequence r = r1 . . . rk is a subsequence of s if there is a strictly increasing
sequence i1, i2, . . . , ik of indices such that for all j = 1 . . . k we have rj = sij .

Given two sequences x and y we say that a sequence r is a common subsequence if r is
a subsequence of both x and y. In the longest common subsequence problem, we are
given two sequences x = x1 . . . xn and y = y1 . . . ym and wish to find a maximum-length
common subsequence of x and y.

Give a O(mn)-time dynamic programming algorithm to solve the longest common
subsequence problem.

Mary Cryan

2


