1. Show how to sort n integers in the range $\{1,\ldots,n^2\}$ in $O(n)$ time.

2. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $\langle 5,10,12,5,50,6 \rangle$.

Simplified version of Ex. 15.2-1 of [CLRS] (2nd and 3rd eds)

3. Consider the problem of taking a set of n items with sizes s_1,\ldots,s_n and values v_1,\ldots,v_n respectively. We assume $s_i,v_i \in \mathbb{N}$ for all $1 \leq i \leq n$. Suppose we are also given a “knapsack capacity” $C \in \mathbb{N}$. The knapsack problem is the problem of finding a subset $S \subseteq \{1,\ldots,n\}$ such that $\sum_{i \in S} s_i \leq C$ and such that $\sum_{i \in S} v_i$ is maximized subject to the first constraint.

We write $kp_{n,C}$ to denote the value $\sum_{i \in S} v_i$ of the maximum-value knapsack on the set of all items. For any $k \leq n$, and any $\hat{C} \leq C, \hat{C} \in \mathbb{N}$, we can consider the same problem on the first k items in regard to capacity \hat{C}. We denote the maximum-value knapsack for such a subproblem by $kp_{k,\hat{C}}$.

(a) Prove that the following recurrence holds:

$$kp_{k,\hat{C}} = \begin{cases}
0 & \text{if } k = 0 \\
kp_{k-1,\hat{C}} & \text{if } k > 0 \text{ but } s_k > \hat{C} \\
\max[kp_{k-1,\hat{C}}, kp_{k-1,\hat{C}-s_k} + v_k] & \text{otherwise.}
\end{cases}$$

(b) Use the recurrence in (a) to develop a $\Theta(n \cdot C)$ dynamic programming algorithm to compute the optimal knapsack wrt the original n items and capacity C.

4. Longest Common Subsequence A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Given a sequence $s = s_1s_2\ldots s_n$, we say another sequence $r = r_1\ldots r_k$ is a subsequence of s if there is a strictly increasing sequence i_1, i_2, \ldots, i_k of indices such that for all $j = 1 \ldots k$ we have $r_j = s_{i_j}$.

Given two sequences x and y we say that a sequence r is a common subsequence if r is a subsequence of both x and y. In the longest common subsequence problem, we are given two sequences $x = x_1\ldots x_n$ and $y = y_1\ldots y_m$ and wish to find a maximum-length common subsequence of x and y.

Give a $O(mn)$-time dynamic programming algorithm to solve the longest common subsequence problem.

Mary Cryan